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Abstract

Finding a good parametric approximation to the productivity distribution is a problem of gen-
eral interest. This paper argues that heterogeneity in productivity is best captured by Finite
Mixture Models (FMMs). FMMs build on the existence of unobserved subpopulations in the
data. As such, they are generally consistent with models of firm dynamics differing between
groups of firms and allow for a very flexible distribution fit. We find FMMs to increase this fit
by more than 70% compared to currently considered distributions. A Gains From Trade exercise
reveals that only FMMs approximate the ‘true gains’ reasonably well.
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1 Introduction

Finding a good parametric approximation to the productivity distribution is a problem of general
interest. Its importance can be appraised by its large influence on various research fields. First, the
mechanisms driving firm-level dynamics in aggregate growth models are determined by the para-
metric approximation of the productivity distribution (see for instance Luttmer (2007); Arkolakis
(2016)). Second, the propagation of firm-level volatility to the aggregate level mainly relies on a
Pareto specification for the right tail of the productivity distribution (Gabaix, 2011; di Giovanni
and Levchenko, 2012; Carvalho and Grassi, 2019). In the international trade literature, it is recog-
nized that different choices for the productivity distribution significantly affect Gains From Trade
(GFT) estimates (Head et al., 2014; Nigai, 2017; Bee and Schiavo, 2018) and alters the channels
through which trade affects welfare (Arkolakis et al., 2012; Bas et al., 2017; Melitz and Redding,
2015; Fernandes et al., 2018).

To date, there is no consensus on what this parametric approximation should be. Some authors
argue a single distributional form such as Pareto (Axtell, 2001), Lognormal (Head et al., 2014) or
Weibull (Bee and Schiavo, 2018) suffices to define the productivity distribution. Others build on
the idea that a single distribution can not adequately capture the heterogeneity in productivity.
This results in combinations of distributions such as the Double-Pareto (Arkolakis, 2016), Double-
Pareto Lognormal (Sager and Timoshenko, 2019) or Lognormal-Pareto (Nigai, 2017). Nevertheless,
Dewitte (2020) demonstrates that none of these currently considered distributions are able to provide
a sufficiently good fit to the data.

This paper argues that heterogeneity in the productivity distribution can be captured most
adequately by Finite Mixture Models (FMMs). A FMM is essentially a weighted sum of an a priori
unknown number of individual densities. As such, it is a semi-parametric approximation that allows
for discrete subpopulations to define the overall distribution. The flexible, semi-parametric nature
of FMMs renders them favorable both from a theoretical and empirical point of view.

From a theoretical point of view, the generative process of a FMM corresponds to a simple
combination of the generative processes of the underlying individual densities. A FMM can there-
fore easily generalize, and is generally consistent with, existing models of firm dynamics. First,
FMMs allows to combine a specified generative process of firm dynamics across groups of firms to
capture additional, unspecified heterogeneity. Luttmer (2007), for instance, generalizes his single-
sector model with a finite mixture specification to a multi-sector model. This in order to capture
additional heterogeneity across industries and obtain a satisfactory fit to the data. Second, a finite
mixture specification is generally consistent with the mechanisms considered to differentiate firm dy-
namics between groups of firms. The differences in growth rates between financially constrained and
unconstrained firms by Cabral and Mata (2003), for instance, can be respecified into a finite mix-
ture specification. FMMs provide an empirical tool that can account for dynamics to differ between
groups of firms without having, but not excluding the possibility, to specify the mechanisms that
drive these differences a priori. These mechanisms can be left ‘unobserved’.
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We illustrate the excellent empirical performance of FMMs using the domestic sales1 of the
population of active Portuguese firms in 2006. Our contributions to the literature are threefold.
First, we have access to a representative dataset on the sales distribution. This allows us to evaluate
the performance of parametric distributions on the complete productivity distribution as well as to
focus on both the left and right tail. Moreover, it insulates us from erroneous conclusions due to
truncated or unrepresentative data in the left tail of the distribution (Perline, 2005). Second, we
introduce a multitude of new, economically relevant distributions to the productivity distribution
literature. Fitting and comparing up to 52 different distributions helps to reveal features of the data
that are of importance when deciding on a specific parametric distribution. Third, our analysis
relies on a clear statistical framework to distinguish between distributional fits. Based on the
Bayesian Information Criterion (BIC), the currently favored Double-Pareto Lognormal (Sager and
Timoshenko, 2019) and Lognormal-Pareto (Nigai, 2017) come in ranked sixteenth and thirty-first out
of 52 distributions respectively, while FMMs top the charts. Moreover, a Kolmogorov-Smirnov test
reveals that only FMMs provide a distribution fit that is not rejected by the data. FMMs reduce
the maximum deviation from the empirical Cumulative Distribution Function (the Kolmogorov-
Smirnov test statistic) by more than 70% compared to the Double-Pareto Lognormal distribution
and by more than 90% compared to the Lognormal-Pareto distribution. This performance is not
surprising, as we show that the Double-Pareto Lognormal and Lognormal-Pareto distribution can
be interpreted as constraints of the more general mixture specification.

A Gains From Trade application demonstrates the importance of correctly approximating the
productivity distribution in heterogeneous firms models à la Melitz (2003), and underlines the
straightforward implementation of FMMs into such models. We contribute to the literature provid-
ing quantitative expressions necessary to calibrate a heterogeneous firms model for all distributions
considered. Our calibration exercise reveals that when reducing variable trade costs by two thirds,
FMMs are able to track the ‘true GFT’ (obtained from the empirical distribution) closely, while a
single Lognormal distribution underestimates these GFT by ±11% and a Lognormal-Pareto distri-
bution overestimates them by ±13%.

The paper is organized as follows. In the following section we start by linking the large literat-
ure on the parametric approximation of size distributions, spanning the fields of efficiency analysis,
physics, regional and actuarial science, to the productivity distribution literature. From this over-
view, it becomes apparent that the literature on productivity distributions lacks a clear statistical
framework that differentiates between a sufficiently large number of alternative distributions over a
representative data range. We therefore establish a methodology that uniformly fits a large number
of distributions both to complete and truncated datasets, and present evaluation methods to differ-
entiate between these distribution in section 3. Our database on firm sales is discussed in section 4.
We provide our empirical results in section 5 and discuss the implications of these results for GFT
calculations in section 6. Section 7 concludes.

1We rely on the distributional relation between productivity and positive domestic sales, under specific model
assumptions (Nigai, 2017; Dewitte, 2020), to evaluate parametric approximations of the productivity distribution.
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2 Literature Review

This section provides an overview of the literature related to firm size/productivity distributions. We
discuss why the Pareto distribution can only match the tail of size distributions while single hump-
shaped distributions such as the Lognormal or the Weibull distribution can not accurately match
both the tail and the bulk of the distribution. Size distributions are therefore best approximated by
a combination of distributions, of which we consider three types: mixture, piecewise composite and
multiplicative distributions. We argue that finite mixtures are preferable both from an empirical
and theoretical point of view because of their flexible, semi-parametric nature.

2.1 Single distributions

The Pareto distribution has been dominating heterogeneous firms models (Melitz, 2003). Even
though the Melitz (2003)-model is not restricted to this distributional choice, its empirical perform-
ance (see for instance Axtell (2001); Gabaix (2009); Levy (2009); di Giovanni et al. (2011)) and
convenience led to a widespread reliance on the Pareto distribution for social welfare and economic
policy analysis.2 The fit of a Pareto distribution is usually evaluated using its Cumulative Distri-
bution Function (CDF), which follows a straight line on a log-log scale with the shape parameter
(k) as slope:

GP (x;xmin, k) = 1−
(xmin

x

)k
, x ≥ xmin. (1)

Figure 1 compares a fitted Pareto survival function (CDFc = 1−CDF) with the empirical survival
function of Portuguese firm-level sales in 2006 on a log-log scale for the complete dataset (upper
panel). It is immediately clear that the Pareto distribution is not a good fit to the complete
distribution due to the existence of a hump in the middle.3

The popularity of the Pareto distribution, however, rests on its ability to provide a close fit
to lower-truncated4 data with predominantly large observations.5 Just as every curved line looks
straight when one zooms in close enough, so too does the distribution of firm sales appear to
be straight when truncated sufficiently. Both the left (lower left panel) and right tail (lower right
panel) exhibit linearity of the CDF and survival functions respectively on a log-log scale, in line with

2See Arkolakis et al. (2012) for an overview of work relying on the Melitz-Pareto combination.
3See also the Probability Density Function (PDF) in Appendix Figure 2.
4An upper-truncated version of the Pareto distribution has also been used to explain the existence of zero trade

flows across country pairs (Helpman et al., 2008; Feenstra, 2018) and to demonstrate the relevance of heterogeneous
firms models (Melitz and Redding, 2014). A discussion on the economic relevance of, and an extension of the analysis
to, upper-truncated distributions falls outside the scope of this paper. The methodology set out in this paper allows
to truncate any kind of distribution both from above and/or below (see section 3).

5Note that the influential paper of Axtell (2001) does not rely on truncated data but unintentionally favors the
Pareto distribution due to data binning (Virkar and Clauset, 2014) and methodological choices (Clauset et al., 2009;
Bottazzi et al., 2015) characteristic of that time.
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Pareto behavior in the tails of the distribution.6 The apparent straight line behavior of the tails can
therefore just as well be approximated by a surprisingly large class of distributions including, but not
restricted to, (finite mixtures of) the Exponential, Lognormal, Gamma and Weibull distributions.7

Proof of which is the performance of the Lognormal distribution in the lower panels of Figure 1.8

Figure 1: Empirical survival function of Portuguese domestic sales in 2006 (upper panel) on a log-log
scale with fitted (Inverse) Pareto and (4-component mixture of) the Lognormal distributions. The
lower left and right panels focus on distributions fitted solely to the left and right tail respectively.
Notes: (Truncated) Distributions are fitted using maximum likelihood methods (cf. infra) to the complete and trun-
cated datasets independently. Tail truncation points are determined by the best-fitting (Inverse) Pareto distributions
according to the Kolmogorov-Smirnov statistic.

These alternative hump-shaped distributions are claimed to provide a better fit to complete size
6The Inverse Pareto distribution is specified as

GIP (x;xmax, k) = 1−
(xmax

x

)−k

, x ≤ xmax.

7Perline (2005) defines this class of distributions within the Gumbel domain of attraction.
8Even though Pareto and Lognormal distributions exhibit qualitatively different behavior in their upper tails,

their apparent quantitative similar behavior in the upper tail for Lognormals with large variance is well-documented
(Malevergne et al., 2011).
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distributions (see Bee and Schiavo (2018) for the Weibull and Eeckhout (2004, 2009); Head et al.
(2014); Fernandes et al. (2018) for the Lognormal distribution). In the firm size literature, this
claim is usually supported by comparing their performance with a limited number of alternative
distributions, mostly Pareto, using the low-powered R-squared.9 Even though homogeneous hump-
shaped distributions such as the Lognormal can adequately fit the tail or the bulk of the empirical
distribution, they cannot do both simultaneously. This is easily observable from the upper panel
of Figure 1 where the single Lognormal distribution, when fitted to the complete size distribution,
does not fit the right tail of the complete productivity distribution while matching the bulk rather
satisfactorily.

2.2 Combined distributions

As single distributions are not capable of accurately matching both the bulk and the tail(s) of the
productivity distribution, recent research focuses on combinations of distributions. We consider
three types of combinations: mixture, piecewise composite and product distributions. To our know-
ledge, mixture distributions have not been fitted to the productivity distribution. Nevertheless,
current applications of both the piecewise composite and product distributions can be interpreted
as constraints of the more general mixture specification.

2.2.1 Mixture distributions

Finite Mixture Models (FMMs) are essentially a weighted sum of I individual densities mi(·):

g(x|Ψ) =

I∑
i=1

πimi(x|θi), πi ≥ 0,

I∑
i=1

πi = 1 (2)

where I represents the number of components or discrete subpopulations, πi is the probability
of belonging to component i, θi the component-specific parameter vector of density mi(·) and
Ψ = (π1, . . . , πI−1,θ1, . . . ,θI) is the vector of all model parameters (McLachlan and Peel, 2000).
They are also referred to as Latent Class Models (LCM) provided that the number of components,
and thus also the mixing parameter itself, does not have to be specified a priori but is determined
by the data. As such, a finite mixture model provides a semi-parametric approach ideal to fully
capture the heterogeneity of size distributions.10

The aptitude of Finite Mixture models has already been explored in the context of efficiency
analysis (see for instance Beard et al. (1997); Orea and Kumbhakar (2004); El-Gamal and Inanoglu
(2005); Greene (2005)), city sizes (Kwong and Nadarajah, 2019) and actuarial losses (Miljkovic and
Grün, 2016). It has, to our knowledge, not been applied to productivity distributions before.

9See Clauset et al. (2009) for an explanation as to why the R-squared has low power in a distributional context.
10A semi-parametric approach is to be favored over a nonparametric approach in the case of heavy-tailed distribu-

tions such as firm size. This is because the heavy tails renders nonparametric procedures less efficient (Clauset et al.,
2009; Dewitte, 2020).
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The generative process of a FMM corresponds to a simple combination of the generative processes
of the underlying individual densities and can therefore easily generalize, and is generally consistent
with, existing models of firm dynamics.11 First, FMMs allows to combine a specified generative
process of firm dynamics across groups of firms to capture additional, unspecified heterogeneity.
Luttmer (2007), for instance, generalizes his single-sector model with a finite mixture specification
to a multi-sector model. This allows to capture additional heterogeneity across industries and obtain
a satisfactory fit to the data. Similarly, Rossi-Hansberg and Wright (2007) argue the need to account
for cross-sectoral differences in their initial single-sector model specification to achieve an accurate
description of the cross-sectional size distribution of US firms.

Second, a finite mixture specification is generally consistent with the mechanisms that differen-
tiate firm dynamics between groups of firms. Firm dynamics are argued to differ between groups of
firms depending on whether or not they are financially constrained (Cooley and Quadrini, 2001; Cab-
ral and Mata, 2003; Desai et al., 2003; Albuquerque and Hopenhayn, 2004; Clementi and Hopenhayn,
2006; Angelini and Generale, 2008), innovate (Costantini and Melitz, 2008; Atkeson and Burstein,
2010), add or drop products (Klette and Kortum, 2004; Lentz and Mortensen, 2008), add or drop
management layers (Caliendo and Rossi-Hansberg, 2012; Caliendo et al., 2020), incur specific mar-
ket penetration costs (Arkolakis, 2016), et cetera. As (Rossi-Hansberg and Wright, 2007, p. 1641)
paraphrase Jovanovic (1982): “many of the mechanisms in the literature undoubtedly contributed
toward an explanation of establishment dynamics”. To date, however, it remains unclear which
mechanism, or mechanisms, dominate. There are “many sources of heterogeneity that support the
idea of discrete subpopulations likely to differ in important characteristics” (Perline, 2005, p.80).
Finite Mixture Models provide an empirical tool that can account for dynamics to differ between
groups of firms as determined by the data. As such, they can account for most, or even a com-
bination, of the proposed mechanisms without having to specify these mechanisms a priori. The
mechanisms can be left ‘unobserved’.

2.2.2 Piecewise composite distributions

Piecewise composite distributions have a probability density specified as:

g(x|θ) =


α1m

∗
1(x|θ1) if c0 < x ≤ c1

α2m
∗
2(x|θ2) if c1 < x ≤ c2
...

...
αIm

∗
I(x|θI) if cI−1 < x ≤ cI

(3)

where ∀i ∈ I : m∗
i (x|θi) =

mi(x|θi)∫ ci
ci−1

mi(x|θi)dx
is the probability density function (PDF) of mi(x|θi)

11Note that while this paper conceptualizes the generality of FMMs from a generative perspective, it is not able
to provide evidence in favor of any specific generative process. See the methodology section (section 4), Appendix B
and the conclusion (Section 7) for a more elaborate evaluation of current limitations regarding this paper’s discussion
of (the generative processes of) FMMs.
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truncated at the cutoffs ci−1, ci. For this distribution to be well-behaved, additional differentiability
and continuity conditions are imposed that determine the value of both component cutoffs (ci) and
probabilities (αi) (Bakar et al., 2015), so that the vector of all model parameters reduces to the
combination of the component-specific parameter vectors: θ = (θ1, . . . ,θI).

While these composite distributions can be formed from many individual parametric distribu-
tions, applications mostly focus on Lognormal distributions with Pareto tails. The ‘Inverse Pareto-
Lognormal-Pareto’ distribution has been applied in the city size literature (Ioannides and Skouras,
2013; Luckstead and Devadoss, 2017), while the ‘Lognormal-Pareto’ version was applied by Nigai
(2017) to the Melitz (2003) model for GFT calculations. Dewitte (2020) generalizes the implement-
ation of the piecewise composite distributions to allow for any underlying density in three-, and
two- piecewise composite distributions, mainly focusing on Pareto-tailed piecewise composites.

From the distribution specification in equation 3, it can be observed that piecewise composite
distributions can be interpreted as mixtures of truncated densities with component probabilities
restricted to ensure continuity and differentiability (Scollnik, 2007).12 This contrasts with the
general mixture specification (eq. 2), where component probabilities can be interpreted as the
probability that an individual observation belongs to a certain group of observations. Moreover,
the generative process of piecewise distributions is rather ambiguous. It is for instance not clear yet
which firm dynamics could explain the existence of hard cutoffs that separate the Lognormal from
the Pareto distribution.

2.2.3 Product distributions

Alternatively, distributions can be combined into a product distribution: a probability distribution
constructed as the distribution of the product of random variables having two other known dis-
tributions. The product distribution mainly used in the literature, the Double-Pareto Lognormal
distribution, results from the product of a Lognormal with a (Double-)Pareto distributed random
variable (Reed and Jorgensen, 2004). This distribution is found to approximate city size distri-
butions well (Reed, 2002; Giesen et al., 2010), while Sager and Timoshenko (2019) applied the
distribution to Brazilian export data.

A generative process for this Double-Pareto Lognormal distribution exists (Reed and Hughes,
2002; Reed, 2002; Reed and Jorgensen, 2004) and is applicable to heterogeneous firms models
(Arkolakis, 2016). Interestingly, the Double-Pareto Lognormal distribution can be seen as a struc-
tured infinite mixture of Lognormal distributions (Reed, 2002, p.13).13 The Double-Pareto Lognor-
mal distribution can therefore be absorbed by the more flexible mixture distributions as specified

12This becomes even more clear when we rewrite the specification of the piecewise composite distribution (eq. 3)
as the weighted sum of truncated densities: g(x|θ) = α1I(c0 < x ≤ c1)m

∗
1(x|θ1) + α2I(c1 < x ≤ c2)m

∗
2(x|θ2) + . . .+

αII(cI−1 < x ≤ cI)m
∗
I(x|θI).

13In the context of firm size, this could mean that each age (= time since entry in the market) group of firms is
distributed Lognormally at a certain point in time. The reason the overall firm size distribution is not Lognormal is
that these groups of firms have not all been evolving for the same length of time. The overall distribution of size will
be a mixture of Lognormal distributions (across age groups) with time since entry as mixing parameter. When this
mixing parameter is exponentially distributed, firm size will be Double-Pareto Lognormally distributed.
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in equation 2. Whereas the Double-Pareto Lognormal may suffer from misspecification and/or
oversimplification by imposing a structure on the mixture distribution, a FMM allows the data to
determine the mixture structure needed to capture the heterogeneity that is present in the data.

3 Methodology

The literature review reveals the myriad of empirical evidence in favor of qualitatively very different
distributions fits to productivity. This points at the lack of a clear statistical framework that
differentiates between a sufficiently large number of distributions over a representative data range.
In this section, we establish a methodology that uniformly fits the large, but relevant, range of single
and combined distributions to both complete and truncated data. We then present statistical tests
to differentiate between the fitted distributions.

3.1 Distribution fitting

We rely on Maximum Likelihood (ML)14 over all firms b ∈ B to fit all considered distributions
to the data. We consider the (Inverse) Pareto, hump-shaped distributions (Lognormal, Weibull,
Fréchet, Gamma, Exponential and Burr) and combinations of these distributions in the form of
mixtures, piecewise composite or product distributions. We limit piecewise composite and product
distributions to available Pareto-tailed extensions of the considered hump-shaped distributions.15

In the case of FMMs, ML is wrapped in an Expectation-Maximization (EM) algorithm to estimate
the component probabilities. The estimation methods allow to fit the distributions to both complete
and truncated data. This will not only allow us to single out and focus on tail performance, but
also to generalize the proposed distributional fits to unrepresentative and/or truncated data.

3.1.1 (Inverse) Pareto

Complete data The ML estimator for the shape parameter k over all firms b ∈ B can easily be
obtained as

14The choice for Maximum Likelihood contrasts with the productivity distribution literature, where popular fitting
techniques rely on the minimization of squared errors between a log-linearization of the theoretical and empirical
PDFs/CDFs (Axtell, 2001; di Giovanni and Levchenko, 2013; Head et al., 2014; Freund and Pierola, 2015; Bas et al.,
2017; Nigai, 2017; Bee and Schiavo, 2018). Such methods, however, might not be apt to fit distribution functions.
For instance, reported parameters in the literature are, to our knowledge, not obtained from a regression procedure
restricted to estimate a properly normalized distribution function. Parameters obtained from an estimation procedure
must result in a probability density function that integrates to 1 over the range from the lower bound up to the upper
bound (due to its normalization properties) (Clauset et al., 2009). While it is possible to incorporate such constraints
in the regression analysis, it has never been reported to our knowledge. Moreover, it is unclear to which extent
the standard errors obtained from these methods are valid (Clauset et al., 2009; Bottazzi et al., 2015). Maximum
likelihood methods do not suffer from such problems.

15See Appendix Tables 1, 2 and 3 for an overview of the specifications for all distributions considered. Considered
distributions are chosen based on their occurrence in the economic literature.
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kIP =

[
1

B

B∑
b=1

ln
xmax

xb

]−1

, kP =

[
1

B

B∑
b=1

ln
xb

xmin

]−1

. (4)

The ML estimator of the scale parameters equals the maximum and minimum observation:
x̂min = min(x), x̂max = max(x), as the likelihood function is monotonically increasing (decreasing)
in xmin (xmax).

Truncated data The (Inverse) Pareto distribution is a special distribution, being truncated from
(above) below by definition.16 This means that the (upper) lower truncation point lies within the
parameter space of the distribution, and distribution fits can be optimized accordingly. The ML
estimator as specified above merely assumes the exogenously applied truncation points as scale
parameter.

Obtaining an accurate estimate for the (upper) lower bound is, however, vital to the accuracy
of the estimated shape parameter k̂. Choosing a (maximum) minimum too (high) low results in a
biased shape parameter, as one will be fitting a power-law to non-power-law data. Choosing a value
too (low) high, on the other hand, increases the statistical error and bias from finite size effects on
the shape parameter, as one discards legitimate data points. Moreover, it is widely documented
that the minimum and shape parameter of the Pareto distribution exhibit a positive correlation
(Eeckhout, 2004; di Giovanni and Levchenko, 2013; Head et al., 2014; Freund and Pierola, 2015;
Bee and Schiavo, 2018).

Many practices therefore co-exist to determine the (upper) lower truncation point, without
consensus on the best practice to determine this scale parameter of the (Inverse) Pareto-distribution.
In the case of the Pareto distribution, some rely on visual techniques, looking for a ‘kink’ in the
distribution above which the relationship between log rank and log size is approximately linear
(di Giovanni and Levchenko, 2013; Bas et al., 2017). Some use export sales, and assume as such
a truncation parameter equal to the minimum of sales, e.g. Freund and Pierola (2015). Others
determine their minimum to ensure a Pareto parameter large enough to deliver finite moments when
calibrating their theoretical models (Head et al., 2014; Bee and Schiavo, 2018). Still others estimate
the minimum, assuming a mixed Lognormal-Pareto distribution (Malevergne et al., 2011; Bakar
and Nadarajah, 2013; Nigai, 2017). Such methods are either subject to possibly large measurement
errors and inconsistencies or restrictive in their need to assume a distributional relation between
the bulk and the tail of the distribution.

In order to obtain an accurate estimate for the lower bound, we rely on a formal decision rule
developed by Clauset et al. (2009). For the ordered productivity set {xb; b = 1, . . . , B}, we evaluate
every xb as a potential (xmax) xmin, estimating the ML estimate of the power-law exponent k. We

16Fully truncated (both from below and above) Pareto distributions can be deduced from a truncated probability
density function (see eq. 6) and have been used in the economic literature (Helpman et al., 2008; Melitz and Redding,
2014; Feenstra, 2018).
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then use the Kolmogorov-Smirnov statistic to select the optimum (xmax) xmin. It is defined as the
cutoff which minimizes the maximum absolute deviation of the empirical from the theoretical CDF:

TKS,x̂max = sup
x≤x̂max

∣∣∣∣∣ 1B
B∑
b=1

I(xb ≤ x̂max)−GIP (x; k̂, x̂max)

∣∣∣∣∣
TKS,x̂min

= sup
x≥x̂min

∣∣∣∣∣ 1B
B∑
b=1

I(xb ≥ x̂min)−GP (x; k̂, x̂min)

∣∣∣∣∣ , (5)

where IA is the indicator of event A.

3.1.2 Hump-shaped, piecewise composite and product distributions

Complete data The maximum likelihood of the considered hump-shaped distributions (Lognor-
mal, Weibull, Fréchet, Gamma, Exponential and Burr) is straightforward and estimation methods
are widely available. We also consider piecewise composite distributions as Pareto-tailed extensions
of these hump-shaped distributions. The ML estimator of these distributions has no closed form
and needs to be approached numerically, see Dewitte (2020). Pareto-tailed extensions in the form of
product distributions, on the other hand, are less generally available. We consider the Double-Pareto
Lognormal distribution (Reed and Jorgensen, 2004). This distribution is the result of multiplying
a Double Pareto, used by among others Arkolakis (2016), with a Lognormal distribution. Reducing
the parameter space of the Double Pareto allows us to consider the Left- and Right-Pareto Lognor-
mal distribution respectively. Also in this case, the ML estimator has no closed form solution and
needs to be approached numerically (Reed and Jorgensen, 2004).

Truncated data Consisting of individual truncated densities, the estimation of piecewise com-
posite distributions on truncated data is by its definition straightforward. Maximum likelihood
methods for the remaining hump-shaped and product distributions can easily be adapted by trun-
cating the distribution to be restricted within the domain of the data. The resulting truncated
probability density function (g∗(x)) is then specified within the (exogenously determined) bound-
aries x ∈

[
cl, cu

]
:

g∗(x) =
g(x)

G(cu)−G(cl)
. (6)

3.1.3 FMM

Complete data Direct maximum likelihood estimation of a FMM (see eq. 2) is not straightfor-
ward, since the number of components I is a priori unknown. The log-likelihood function can be
written as
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logL(x|Ψ) =

B∑
b=1

I∑
i=1

zbi [log(πi) + log(mi(xb|θi))] , (7)

where zbi is an unobserved component indicator equal to one if the observation xb originates
from subpopulation i and zero otherwise. Two steps need to be taken iteratively in order to be able
to maximize this equation. The Expectation (E)-step of the s-th iteration consists of determining
the conditional expectation of eq. 7 given the observed data and the current parameter estimates
from iteration s− 1:

Q(Ψ|Ψ(s−1)) = E
[
logL(x|Ψ)|x,Ψ(s−1)

]
=

B∑
b=1

I∑
i=1

π
(s)
bi [log(πi) + log(mi(xb|θi))] , (8)

where the missing data zni is replaced by the posterior probability that xb belongs to the ith
mixture:

π
(s)
bi = E

[
zbi|xb,Ψ(s−1)

]
=

π
(s−1)
i mi(xb|θ

(s−1)
i )∑I

i=1 π
(s−1)
i mi(xb|θ

(s−1)
i )

. (9)

The Maximization (M)-step then, consists of maximizing the Q-function over the parameter
vector Ψ:

Ψ(s) = max
Ψ

Q(Ψ|Ψ(s−1)). (10)

Each iteration updates the E- and M-step until the algorithm converges (See Miljkovic and Grün
(2016) and McLachlan and Peel (2000) for a more elaborate overview).

The validity of the proposed estimation technique does not depend on its ability to identify the
unobserved component indicator zbi. FMMs can be utilized in two ways. First, they can be used as
a semi-parametric, flexible approximation of the overall distribution. Second, they are model-based
clustering methods when a certain distribution is imposed (Fop et al., 2018; Grün, 2018). While both
applications rely on the idea that discrete subpopulations define the overall distribution, the semi-
parametric approximation does not claim to correctly identify these subpopulations (zbi). This
paper relies on FMMs as a semi-parametric approximation of the productivity distribution. See
Appendix B for a more elaborate discussion on the difference between both applications and their
relevance for the current analysis.
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Truncated data The EM-algorithm can be adapted to fitting data only to truncated data within
the (exogenously determined) boundaries x ∈

[
cl, cu

]
. We specify the conditional densities

g(x|Ψ, cl ≤ x ≤ cu) =

∑I
i=1 πimi(x|θi)

G(cu|Ψ)−G(cl|Ψ)

=

I∑
i=1

πi
Mi(c

u|θi)−Mi(c
l|θi)

G(cu|Ψ)−G(cl|Ψ)

mi(x|θi)
Mi(cu|θi)−Mi(cl|θi)

=

I∑
i=1

ηimi(x|θi, cl ≤ x ≤ cu), (11)

with ηi > 0,
∑I

i=1 ηi = 1 and Mi the component-specific Cumulative Distribution Function.
The Q-function becomes

Q(Ψ|Ψ(s−1)) = E
[
logL(x|Ψ)|x,Ψ(s−1)

]
=

B∑
b=1

I∑
i=1

π
(s)
bi

[
log(ηi) + log(mi(xb|θi, c

l ≤ xb ≤ cu))
]
, (12)

where the posterior probability that xb comes from the ith mixture is not affected by the trun-
cation:

π
(s)
bi =

η
(s−1)
i mi(xb|θ

(s−1)
i , cl ≤ xb ≤ cu))∑I

i=1 η
(s−1)
i mi(xb|θ

(s−1)
i ), cl ≤ xb ≤ cu)

=
π
(s−1)
i mi(xb|θ

(s−1)
i )∑I

i=1 π
(s−1)
i mi(xb|θ

(s−1)
i )

. (13)

The M-step then again consists of maximizing the Q-function over the parameters Ψ. Iterating
over the E- and M-step until the algorithm converges provides us with distributions fitted to the
truncated data.

3.2 Distribution evaluation

We rely on multiple distinct criteria to differentiate between the distributions. First, we consider
whether the proposed parametric distribution is a sufficiently good fit to the data. We then differ-
entiate between distributions using information criteria.

Goodness of fit We follow Dewitte (2020) in evaluating the parametric distributions by sum-
marizing the distance between the empirical and parametric rth moment of the distribution by the
1- and ∞-norm:

Sr =
∑
y

∆r(y), T r = sup
y

∆r(y), (14)

where ∆r(y) is the normalized absolute deviation:
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∆r(y) =

∣∣∣ 1B ∑B
b=1 I(xb ≥ y)xrb −

∫∞
y xrg(x|Ψ)dx

∣∣∣
1
B

∑B
b=1 x

r
b

. (15)

I(A) is the indicator of event A and µr
y =

∫∞
y xrg(x|Ψ)dx is the y-bounded, rth-moment of the

parametric distribution, with r taking positive values. Evaluated at the 0th-moment of the distribu-
tion, the test statistic T 0 corresponds with the Kolmogorov-Smirnov (KS) test statistic, quantifying
the largest distance between the empirical and parametric CDF. This is the sole specification of the
statistic specified on which we can rely to provide statistically underpinned claims regarding the
accuracy of the distributional assumption with respect to its empirical counterpart. Nevertheless,
Dewitte (2020) argues that evaluating these test statistics at higher moments of the distribution
(r > 0) can be informative on the distributional fit, especially relating to their use in heterogen-
eous firms models (see also section 6).17 Whereas the ∞-norm contains only information on the
largest distance, the 1-norm provides information on the distance between both distributions over
the complete distributional space, weighting all distances equally. The normalization factor allows
us to interpret the distances on a scale of zero to one for all moments, similar to the interpretation
of the standard KS test statistic.

As we rely on estimated parameters, asymptotic distributions are not available for the test
statistics. We therefore rely on a parametric bootstrap:

1. Assume B i.i.d. random variables with distribution G(·|Ψ);

2. Estimate the parameters Ψ of the distribution using MLE and calculate the rth moment
implied by the parametric distribution: µ̂r;

3. H0 : µ
r = µ̂r with test statistic t ∈ {Sr, T r};

4. Draw N bootstrap samples of size B from G(·|Ψ̂);

5. For each sample of the parametric distribution, calculate the bootstrapped test statistics
t∗ ∈

{
(S r̃)∗, (T r̃)∗

}
;18

6. The p-value is then defined as

p̂ =
1

N + 1

[
N∑

n=1

I (t∗n ≥ t) + 1

]
. (16)

The bootstrap exercise should therefore be interpreted as ‘the likelihood of observing a deviation
between the moments of the empirical and parametric distribution as large as t under the null

17We have no knowledge of statistical tests that evaluate distributional fits based on bounded higher moments of
the distribution.

18Note that we do not re-fit the parametric distribution to the bootstrap sample. The vastness of the dataset at our
availability in the empirical section results both in a large computational burden but also a very precise estimation
of the distribution parameters. The influence of not refitting the parametric distribution to the bootstrap sample is
therefore negligent.
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hypothesis’, allowing us to evaluate whether the distributional assumption provides a good fit to
the evaluated moments of the distribution.

Information Criteria We differentiate between distributions based on the log-likelihood, the
Aikaike or Bayesian Information Criteria. When possible, we can differentiate between two distri-
butions based on the ratio of their likelihoods:

LR =

B∑
b=1

ln
g1(xb; ·)
g2(xb, ·)

(17)

with g1,2 the probability densities of the respective distributions. If these distributions are non-
nested (Vuong, 1989), the test statistic amounts to the sample average of this ratio, standardized
by a consistent estimate of its standard deviation. The null hypothesis states that both classes of
distributions are equally far (in the Kullback and Leibler (1951) divergence/relative entropy sense)
from the true distribution. If this is true, our test statistic will follow (asymptotically) a Gaussian
distribution with mean zero. If the null is false, and g1(·) is closer to the truth, the test statistic
diverges to +∞ with probability one. If g2(·) fits the data better, it diverges to −∞ (Vuong, 1989).

The Aikaike Information criterion penalizes the log-likelihood information for the number of
parameters (to avoid overfitting) and is defined as AIC = 2np − 2ln(L) with np the number of
parameters and ln(L) the log-likelihood. Similarly, the Bayesian Information criterion corrects for
the number of parameters as BIC = npln(B)− 2ln(L). Differentiation between distributions relies
then on te relative distance of the BICs: ∆BIC = BIC1 − BIC2. The value of ∆BIC implies
strong evidence in favor of distribution 1 if B > 10, moderate evidence if 6 < B ≤ 10 and weak
evidence if 2 < B ≤ 6 (Kass and Raftery, 1995). AIC and BIC statistics are considered adequate
when choosing the number of components for a suitable FMM (McLachlan and Peel, 2000).

4 Data

We use firm-level data from Portugal to evaluate the empirical performance of FMMs compared
to “traditional” distributions such as the Log-normal or Pareto distribution. The main source of
information is Sistema de Contas Integradas das Empresas (SCIE, Enterprise Integrated Accounts
System) in the year 2006, a dataset covering the universe of active Portuguese firms that has been
used already by, among others: (Carreira and Teixeira, 2016; Dias et al., 2016; Fernandes and
Ferreira, 2017; Bastos et al., 2018; Fonseca et al., 2018).19 It contains data both on firm-level sales
and number of employees. Moreover, each firm has a unique identification number that allows us
to link this dataset with a dataset on international trade.

The firm size distribution of Portugal was earlier the object of study by Cabral and Mata (2003),
who relied on a longitudinal matched employer-employee dataset covering all business units with

19A comparison between SCIE and the OECD SBDS database proves the full coverage of firms in our dataset for
the Portuguese economy (see Table 6).

14



at least one wage earner in the Portuguese economy (Quadros de Pessoal). They provide evidence
that the firm size distribution of Portugal is not very different from other countries such as France,
the United States, Germany, Japan and the United Kingdom.

We rely on the distributional relation between productivity and positive domestic sales, under
specific model assumptions (Nigai, 2017; Dewitte, 2020), to evaluate parametric approximations of
the productivity distribution. Relying on domestic rather than total sales corrects for the impact of
international trade on the firm size distribution (di Giovanni et al., 2011). We reduce our dataset
discarding self-employed companies20, resulting in a dataset covering the positive domestic sales of
299,935 Portuguese firms in 2006.

5 Results

We fit the distributions to Portuguese domestic sales in the year 2006. We initially focus on fitting
the Pareto, Lognormal, combinations of Pareto and Lognormal and up to 5-component mixtures
of Lognormals to the complete data. This proves to be sufficient for our main message. We show
that our results hold when focusing on the tails of the data, can be extended to other economically
relevant distributions, are robust to sample selection and outliers and can be externally validated
on city size data.

5.1 Complete data

Single distributions can not sufficiently capture the heterogeneity of the productivity distribution.
Table 1 displays the selected distribution fits, ordered according to their log-likelihood. One im-
mediately observe that single parametric distributions provide the worst fits. This demonstrates
the need, as the evolution of the literature indicates (Nigai, 2017; Sager and Timoshenko, 2019),
to combine distributions in order to adequately capture heterogeneity in productivity. The Pareto
distribution, for instance, provides a really bad fit to the distribution with a Goodness of fit statistic
of up to 267 times bigger than the best fitting mixture of Lognormals.21.

Finite mixture models greatly improve the distributional fit, without over-fitting the data. Ac-
cording to the log-likelihood, distributions with a larger number of parameters provide a better fit
to the data, even when parameter correction (RAIC,BIC) is applied. The BIC values indicate that
the 4-component Lognormal provides the best fit to the data. This demonstrates that the perform-
ance of FMMs is not the result of over-fitting, but of FMMs being able to capture heterogeneity of
which other distributional forms are not capable. The currently favored Double-Pareto Lognormal
(Sager and Timoshenko, 2019) and Lognormal-Pareto (Nigai, 2017) distribution are ranked fourth
and eighth respectively. The structure imposed on a general mixture specification in order to at-
tain these specific piecewise composite or product distributions (see section 2.2) is therefore not

20Disregarding individual companies renders our dataset more comparable with earlier datasets used to evaluate
productivity distributions such as the ORBIS database used by Nigai (2017).

21The higher the Goodness of fit statistic, the larger the deviation between the empirical and parametric distribution
(see eq. 15)
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Table 1: Selected distribution fits to Portuguese domestic sales in 2006.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b Loglike RAIC RBIC

5-comp. Lognormal 14 0.18 0.11 12,776 1 2+++

(0.10;0.25) (0.08;0.32)
4-comp. Lognormal 11 0.19 0.11 12,770 2 1

(0.09;0.25) (0.08;0.32)
3-comp. Lognormal 8 0.29 0.34 12,723 3 3+++

(0.10;0.24)** (0.09;0.32)**
Double-Pareto Lognormal 4 0.66 0.80 12,429 4 4+++

(0.09;0.25)*** (0.08;0.33)***
2-comp. Lognormal 5 0.53 0.71 12,401 5 5+++

(0.10;0.24)*** (0.09;0.32)***
Inv. Pareto-Lognormal-Pareto 4 0.81 1.01 12,231 6 6+++

(0.09;0.26)*** (0.08;0.34)***
Inv. Pareto-Lognormal 3 3.02 4.26 9,198 7 7+++

(0.09;0.24)*** (0.08;0.31)***
Lognormal-Pareto 3 2.56 3.78 8,721 8 8+++

(0.09;0.25)*** (0.08;0.32)***
Left-Pareto Lognormal 3 3.23 4.91 8,059 9 9+++

(0.10;0.25)*** (0.09;0.32)***
Right-Pareto Lognormal 3 2.82 4.38 8,028 10 10+++

(0.09;0.25)*** (0.08;0.32)***
Lognormal 2 2.93 5.03 7,372 11 11+++

(0.10;0.25)*** (0.08;0.33)***
Pareto 2 48.34 68.18 -436,227 12 12+++

(0.09;0.25)*** (0.08;0.33)***

Notes: All distributions fitted using Maximum Likelihood.
Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic
with 999 replications. ∗∗∗, ∗∗, ∗ indicate significance of this test at 1%, 5% and 10% respectively.
+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms
of BIC (∆BIC) providing strong evidence in favour of the first-ranked distribution (∆BIC > 10), moderate
evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.
a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.
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warranted.
Finite mixture models are the sole parametric specifications that are not rejected by the data.

Focusing on goodness-of-fit criteria around the 0th moment, we observe that these follow the log-
likelihood ranking closely. The 4- and 5-component Lognormal distributions reduce the largest
deviation from the empirical CDF (T 0) by more than 70% (0.66−0.19

0.66 ×100) compared to the Double-
Pareto Lognormal distribution and by more than 90% compared to the Lognormal-Pareto distri-
bution. This pattern is consistent over the complete range of the data, as is apparent from the
cumulative error of the CDF fit (S0). Moreover, none of the currently favored parametric distri-
butions provide a good fit to the data. Only for the 4- and 5-component Lognormal distributions
the null hypothesis that the data originates from the proposed parametric distribution can not be
rejected.

Figure 222 provides a visual insight into the numerical results of Table 1. It plots the normalized
absolute deviation between the empirical and parametric CDF. The figure shows the large errors
related to the Lognormal distribution. Augmenting the Lognormal distribution with a Pareto right-
tail as in Nigai (2017) improves the fit only marginally. While it does provide a slightly better fit in
the right tail of the distribution, this comes at the cost of a worse fit to the left-tail of the distribution
and an almost equally bad fit to the bulk of the distribution as the Lognormal distribution. The
best-fitting Pareto-tailed Lognormal, the Double-Pareto Lognormal, does a better job at fitting
the distribution. However, it clearly lags behind in comparison with the 4-component Lognormal,
which only displays marginal errors both in the bulk and the tails of the data. This tail performance
becomes even more apparent when considering the Quantile-Quantile plot in Figure 3.

Figure 2: Normalized Absolute Deviation between the empirical and Double-Pareto Lognormal,
Lognormal-Pareto, Lognormal and 4-component Lognormal CDFs over the complete range of do-
mestic sales in Portugal, 2006.

22This representation of the results is essentially a visually more interpretable version of the Probability-Probability
plot (see Appendix Figure 3).
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Figure 3: Quantile-Quantile plot for the Double-Pareto Lognormal, Lognormal-Pareto, Lognormal
and 4-component Lognormal over approximately 99.99% of domestic sales in Portugal, 2006.
Note: Quantiles are capped at 600 for expositional purposes, leaving out approximately the upper 0.01% of the data.

5.2 Truncated data

Allowing for heterogeneity in distributions clearly provides a better fit when fitting the complete
distribution, but what about when we fit the tails only? This is mostly interesting from the Pareto
point of view, which is often claimed to be a good fit to the right tail of the productivity distribu-
tion.23

Table 2 displays the results of fitting the (Inverse) Pareto to the (left) right tail of the distribution
using the methods described in section 3. We recovered the best-fitting truncation point for the
(Inverse) Pareto distribution, assigning 8.53% and 6.07% of the data to the left and right tail
respectively. We reduced our dataset according to these truncation parameters and fitted truncated
mixtures of Lognormals to both tails of the distribution for comparison. This approach puts the
Pareto distribution twice in the advantage. First, it is free from a parametric specification for
the bulk of the distribution. Second, the truncation parameter is chosen in function of the best-
fitting (Inverse) Pareto distribution. As a result, the (Inverse) Pareto, as well as (mixtures of) the
Lognormal, provide a good fit to the tails according to the Kolmogorov-Smirnov test.

Nevertheless, despite the advantage for the (Inverse) Pareto distribution, it seems that (mixtures
of) the Lognormal distribution provide a significantly better fit to the tails of the data. (Mixtures
of) the Lognormal distribution have a higher log-likelihood and lower deviation from the empirical
CDF than the (Inverse) Pareto distribution. This results in the likelihood ratio test significantly
rejecting Pareto in favor of (mixtures of) the Lognormal distribution, which is in line with earlier
results reported in related literature (Clauset et al., 2009). When correcting for the number of
parameters, the BIC reveals that the single Lognormal distribution is sufficient to fit the tail only.

23Note that this argument carries the normative value that obtaining a good fit for larger firms is absolute, regardless
of the implications for the fit to smaller firms.
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A mixture of Lognormals insufficiently improves the fit in order to justify the corresponding increase
in number of parameters.

Table 2: Selected distribution fits to the tails of Portuguese domestic sales in 2006.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b Loglike RAIC RBIC

Left tail (N=25,588, 8.53% of the data)

5-comp. Trunc. Lognormal 14 0.63 0.04 108,196.19*** 5 6+++

(0.32;0.85) (0.02;0.10)
4-comp. Trunc. Lognormal 11 0.61 0.04 108,195.05*** 4 5+++

(0.33;0.85) (0.02;0.09)
3-comp. Trunc. Lognormal 8 0.58 0.04 108,194.44*** 1 4+++

(0.33;0.86) (0.02;0.10)
2-comp. Trunc. Lognormal 5 0.77 0.06 108,189.93*** 3 3+++

(0.32;0.84)* (0.02;0.09)
Trunc. Lognormal 2 1.02 0.10 108,186.99*** 2 1

(0.32;0.85)** (0.02;0.09)**
Inv. Pareto 2 0.80 0.10 108,183.90 6 2++

(0.33;0.84)* (0.02;0.09)**

Right tail (N=18,217, 6.07% of the data)

5-comp. Trunc. Lognormal 14 0.62 0.03 -47,896.59*** 5 6+++

(0.39;1.00) (0.02;0.07)
Trunc. Lognormal 2 0.70 0.04 -47,897.86*** 1 1

(0.38;0.97) (0.02;0.08)
2-comp. Trunc. Lognormal 5 0.71 0.04 -47,897.99*** 2 3+++

(0.38;1.01) (0.02;0.08)
3-comp. Trunc. Lognormal 8 0.68 0.04 -47,898.60*** 3 4+++

(0.38;0.99) (0.02;0.08)
4-comp. Trunc. Lognormal 11 0.68 0.04 -47,898.62*** 4 5+++

(0.39;1.00) (0.02;0.08)
Pareto 2 0.86 0.08 -47,910.44 6 2+++

(0.38;0.99) (0.02;0.08)*

Notes: All distributions fitted using Maximum Likelihood.
Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic
with 999 replications. ∗∗∗, ∗∗, ∗ indicate significance of this test at 1%, 5% and 10% respectively.
Similarly, ∗∗∗, ∗∗, ∗ indicate significance at 1%, 5% and 10% respectively for the likelihood ratio test between
(Inverse) Pareto and (mixtures of) the Lognormal distribution.
+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms
of BIC (∆BIC) providing strong evidence in favour of the first-ranked distribution (∆BIC > 10), moderate
evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.
a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.

5.3 Extension to other distributions

The superior performance of FMMs is not limited to the Lognormal distribution. Appendix Table 7
displays the results of fits to the complete data expanding to FMMs of distributions often used in the
economic literature such as the Exponential, Gamma, Weibull, Burr and Fréchet distribution. Most
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of these mixtures are not able to match the performance of the Lognormal. Only the Burr distri-
bution provides an equivalent fit to the PDF and CDF.24 Compared to Pareto-tailed combinations
of distributions, we find that also mixtures of Weibull and Gamma are able to provide an improved
distribution fit. Overall, the currently favored Double-Pareto Lognormal (Sager and Timoshenko,
2019) and Lognormal-Pareto (Nigai, 2017) distribution are ranked sixteenth and thirty-first respect-
ively according to BIC, out of 52 considered distributions.

The consistent excellent performance of the Lognormal distribution can be motivated from two
perspectives. From the perspective of overall fit, a mixture of (log-) normal distributions with
sufficient components is assumed to be able to approach all distributions (McLachlan and Peel,
2000). From a generative perspective for individual components, the Lognormal distribution is the
realization of applying the Central Limit Theorem (CLT) in the log domain: firm heterogeneity
will approximately be Lognormal if it is the multiplicative product of many independent random
variables. This corresponds with extensions of heterogeneous firms models à la Melitz (2003) that
consider multi-dimensional firm heterogeneity, taking into consideration the product dimension
(Bernard et al., 2009) or uncertainty in demand and/or supply (see for instance De Loecker (2011);
Bas et al. (2017); Sager and Timoshenko (2019); Gandhi et al. (0)).

5.4 Robustness

We scrutinize the robustness of our results with a number of additional analyses. First, we examine
whether our results are not caused by sample selection. We therefore restrict our dataset to the
manufacturing sector only (see Appendix Table 8) and find the performance of FMMs to improve
relative to Pareto-tailed distributions. Second, we inspect whether our results are not due to outliers
in the tails of the distribution. We discard the first and last 1,000 observations of the dataset. Results
in Appendix Table 9 again confirm the superiority of FMMs.

We validate our approach externally fitting the considered distributions to the U.S. Census 2000
city size distribution data. This dataset has been subject to an extensive debate in the city size
literature, including the discussion between Eeckhout (2004, 2009) and Levy (2009).25 Appendix
Table 10 provides the test results, demonstrating that the city size distribution is neither Lognor-
mal, Pareto nor Pareto-tailed Lognormal. It is best approximated by a 2-component Lognormal
distribution (according to the BIC). These results provide an overview of the city size literature up
till now and are in line with the findings of Kwong and Nadarajah (2019).

6 Gains From Trade implications

As stated in the introduction, the Gains From Trade literature is an area where finding a good
parametric approximation of the productivity distributions is of critical importance. In this section,
we integrate the distribution fits from the previous section into a heterogeneous firms framework à la

24The Burr distribution fails to match higher moments of the data, however. See also section 6.
25The dataset is available at https://www.aeaweb.org/aer/data/sept09/20071478_data.zip.
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Melitz (2003). This allows us to perform a GFT exercise along the lines of (Melitz and Redding, 2015;
Bee and Schiavo, 2018) and investigate the importance of providing a good fit to the productivity
distribution.

Our setup is a two-country symmetric heterogeneous firms model with a finite number of firms.26

The parameterization of our model is standard (Head et al., 2014; Melitz and Redding, 2015; Bee
and Schiavo, 2018). We work with two symmetric countries i and j and choose labor in one country
as the numeraire, so that W i = W j = 1. We choose fixed entry costs fe = 0.545 and set fixed costs
equal to one (f ii = f ij = 1). The elasticity of substitution is set to four.

Finally, we need to capture the heterogeneity distribution. Assuming a parametric distribution
and under the assumption of an infinite number of firms, we can calculate the necessary analytical
expressions using the distributional parameters from our empirical analysis to capture heterogeneity.
Following Nigai (2017), we can also capture heterogeneity directly from the empirical, finite, data.
To allow comparison between GFT obtained assuming a parametric distribution and GFT obtained
from the finite data, we perform a parametric bootstrap. This parametric bootstrap generates a
range of finite sample estimates under the hypothesis that the observed data is generated by a
certain parametric distribution, which can be compared with the observed finite data (Dewitte,
2020).

We calculate the changes in welfare due to a trade shock (Gains From Trade), which can be
written as log changes in real per-capita income due to an exogenous increase in variable trade costs
τij to τ ′ij . This can be further decomposed into the channels through which trade affects welfare:
trade costs (τ ij), the number of firms (M i), the probality of successful entry into the domestic
market (m0

ωii∗), the average productivity of firms exporting from i to j (mσ−1
ωij∗)27 and the bilateral

trade share (λij):

100× ln
(Wi)′

Wi
= 100×−ln

(P i)′

P i
(18)

= 100×−

[
ln

(τ ij)′

(τ ij)
− 1

σ − 1

(
ln

(M i)′

M i
− ln

(m0
ωii∗)

′

m0
ωii∗

+ ln
(mσ−1

ωij∗)
′

mσ−1
ωij∗

− ln
(λij)′

λij

)]
.

Our exercise reduces the variable trade costs from τ ij = 3 to (τ ij)′ = 1. The obtained GFT
are displayed in Figure 4. This figure presents the parametric bootstrapped distribution of GFT
by means of box-plots delineating the 5th, 25th, 50th, 75th and 95th quantile. Empirical GFT are
indicated by the vertical blue line. Green circles are the average parametric finite sample GFT and
the parametric plug-in population estimates of GFT are shown by yellow diamonds.

We observe that heavy-(Pareto-) tailed distributions significantly overestimate GFT, while re-
latively light-tailed distributions underestimate GFT. Mixture models are the only distributions
that provide an approximation of GFT that is not rejected by the data. The distributions in Figure

26See Appendix C for a full workout of the model.
27We define average productivity here as average productivity unconditional on successful entry, in contrast to the

definition conditional on successful entry in (Melitz, 2003, p.1702).
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Figure 4: Gains from a reduction in variable trade costs τ ij = 3 to (τ ij)′ = 1.
Notes: Box-plots display the 5th, 25th, 50th, 75th and 95th quantile of the asymptotic distribution of parametric
finite sample GFT obtained from a bootstrap with 999 replications. Yellow diamonds represent the parametric plug-in
(population) estimates of GFT. Green circles are the average parametric bootstrapped finite sample GFT and the
empirical sample GFT are indicated by the vertical blue line. All sample values obtained from a sample of 299,935
firms.
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4 are ordered according to their distance from the empirical GFT. As such, we can interpret the
4-component Lognormal distribution as providing the closest fit to the GFT obtained from the
empirical distribution. Where the empirical values imply an increase in real income per capita of
19.01% when reducing variable trade costs from 3 to 1, the 4-component Lognormal distribution
closely predicts this to be 19.02%, as can be deduced from the parametric plug-in population es-
timates (yellow diamonds). Moreover, the close fit results in a very good approximation of the
empirical GFT, as can be deduced from the parametric bootstrapped finite sample GFT being at
least as small as the empirical GFT in more than 5% of the cases (the box-plot overlaps with the
vertical blue line). This contrasts with the simple Lognormal distribution underestimating the em-
pirical GFT by about 11% with 16.8% predicted GFT, and with the Lognormal-Pareto distribution
overestimating the empirical GFT by approximately 13%, with 21.55% predicted GFT.

Deviations from GFT calculations can be mainly attributed to errors in capturing the evolution
of average productivity of exporting firms and bilateral trade shares. Table 3 reports the weighted
components of welfare gains (see eq. 18) for all considered distributional forms, allowing us to
evaluate the channels trough which the differences in GFT between distributions come about. We
observe that the deviation of the parametric results compared to the empirical distribution are
relatively small for the changes in number of firms and in the probability of successful entry into
the domestic market. The largest differences can be found for the changes in average productivity
of exporting firms and in the trade shares. Heavy-tailed distributions largely underestimate the
positive effect of the increase in average productivity of exporting firms and the negative effect of
the increase in the bilateral trade shares compared to the empirical distribution, while the reverse
is true for lighter-tailed distributions.
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Table 3: Decomposition of procentual welfare gains from a reduction in variable trade costs τ ij = 3 → (τ ij)′ = 1.

Distribution Parms. ln
(Wi)′

Wi − ln
(τij)′

(τij)
1

σ−1
ln

(Mi)′

Mi
1

σ−1
ln

(m0
ωii∗ )′

m0
ωii∗

1
σ−1

ln
(mσ−1

ωij∗ )′

mσ−1

ωij∗
− 1

σ−1
ln

(λij)′

λij

Pareto 2 - 1.10 - - - -
(-0.00;0.00)*** (1.10;1.10) (-0.22;-0.22)*** (-0.00;0.00)*** (0.00;0.00)*** (-0.88;-0.88)***

Left-Pareto Lognormal 3 0.16 1.10 -0.17 0.15 0.60 -1.51
(0.16;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.58;0.62)*** (-1.53;-1.49)***

Inv. Pareto-Lognormal 3 0.17 1.10 -0.17 0.15 0.58 -1.49
(0.16;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.56;0.60)*** (-1.51;-1.47)***

Lognormal 2 0.17 1.10 -0.17 0.15 0.53 -1.44
(0.17;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.51;0.55)*** (-1.46;-1.42)***

Right-Pareto Lognormal 3 0.18 1.10 -0.18 0.17 0.28 -1.19
(0.18;0.19)** (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.23;0.33)** (-1.24;-1.13)**

Empirical 0 0.19 1.10 -0.18 0.18 0.20 -1.10
4-comp. Lognormal 11 0.19 1.10 -0.18 0.18 0.20 -1.10

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.18;0.22) (-1.13;-1.08)
5-comp. Lognormal 14 0.19 1.10 -0.19 0.18 0.20 -1.10

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.19) (0.17;0.22) (-1.12;-1.07)
2-comp. Lognormal 5 0.19 1.10 -0.17 0.17 0.23 -1.13

(0.19;0.19) (1.10;1.10) (-0.18;-0.17)*** (0.16;0.17)*** (0.22;0.25)*** (-1.15;-1.12)***
3-comp. Lognormal 8 0.19 1.10 -0.18 0.18 0.19 -1.09

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.16;0.22) (-1.12;-1.06)
Lognormal-Pareto 3 0.22 1.10 -0.22 0.22 0.02 -0.90

(0.20;0.21)*** (1.10;1.10) (-0.22;-0.20)*** (0.20;0.22)*** (0.04;0.14)*** (-1.04;-0.93)***
Double-Pareto Lognormal 4 - 1.10 - - - -

(0.20;0.22)*** (1.10;1.10) (-0.20;-0.19)*** (0.19;0.20)*** (0.02;0.09)*** (-0.98;-0.90)***
Inv. Pareto-Lognormal-Pareto 4 - 1.10 - - - -

(0.21;0.22)*** (1.10;1.10) (-0.20;-0.18)* (0.18;0.20)*** (0.01;0.08)*** (-0.97;-0.89)***

Notes: Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped statistics with 999 replications. ∗∗∗, ∗∗, ∗ indicate
the rejection of a signifcant overlap of the parametric bootstrapped statistic with the empirical statistic at 1%, 5% and 10% respectively.
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Our results confirm the findings of Dewitte (2020) that a good fit to truncated average sales
proves to be a critical predictor of the performance of GFT calculations. A ranking of the distribu-
tions according to GFT performance does not closely follow the ranking of the fit to the 0th moment
of the distribution (the CDF). The Double-Pareto Lognormal, for instance, provides a closer fit to
the empirical CDF than the Right-Pareto Lognormal, but provides worse GFT approximations.
This can be attributed to the relatively heavy tail of the Double-Pareto Lognormal, resulting in a
large error when calculating higher moments of the distribution. As such, a ranking of distributions
based on the fit to average sales proves to be a better indicator of GFT performance, as can be
deduced from the statistics T 1 in Appendix Table 7.

These findings are not the result of a specific parametrization of the model. Figure 4 displays the
percentage errors in parametric GFT calculations relative to the empirical benchmark for different
parametrization scenarios. Our findings are robust for different values of the elasticity of substitution
(left upper panel) and fixed entry costs (left bottom panel), as well as for different starting values
for the iceberg trade costs (right upper panel) and for a reduction in fixed rather than variable trade
costs (right bottom panel).

7 Conclusion

This paper provides evidence that heterogeneity in the productivity distribution can be captured
most adequately by Finite Mixture Models. A clear statistical framework differentiates between the
fit of 52 distributions to domestic sales of the population of active Portuguese firms in 2006. The
flexible, semi-parametric nature of FMMs results in a substantial empirical performance improve-
ment compared to currently favored distributions in the firm size literature. Moreover, FMMs are
the only distributions providing an approximation of Gains From Trade that is not rejected by the
data.

Even though our results provide strong evidence in favor of FMMs, we take no stance on dis-
tribution type nor on the mixing parameter (or mechanism) that defines the underlying discrete
subpopulations. It is clear that the two are closely interconnected, and therefore not easily iden-
tifiable. Further research is necessary to be able to define which mechanisms result in multiple
individual densities defining the overall productivity distribution.

The idea of FMMs also opens many new venues for ongoing research. For instance, the estima-
tion of productivity usually relies on a first-order Markov process that is identical for the complete
population. Concurrently, however, it is recognized that productivity dynamics are endogenous to
exporting (De Loecker, 2013), importing (Kasahara and Rodrigue, 2008), innovation (Aw et al.,
2011), management practices (Bloom and Reenen, 2011; Caliendo et al., 2020), et cetera. Introdu-
cing Finite Mixture Modeling into the estimation procedures would allow, semi-parametrically, to
control for such discrete subpopulations without the risk of model misspecification. This would be in
line with the exploration of Finite Mixture Models in a stochastic frontier context (see for instance
Beard et al. (1997); Orea and Kumbhakar (2004); El-Gamal and Inanoglu (2005); Greene (2005)).
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Moreover, the potential identification of these subpopulations provides the opportunity to discrim-
inate between the many different mechanisms (see for instance Cabral and Mata (2003); Klette and
Kortum (2004); Rossi-Hansberg and Wright (2007); Atkeson and Burstein (2010); Caliendo et al.
(2020)) that drive the existence of such subpopulations.
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