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Abstract

Finding a good parametric approximation to the productivity distribution is a problem of gen-

eral interest. This paper argues that heterogeneity in productivity is best captured by Finite

Mixture Models (FMMs). FMMs build on the existence of unobserved subpopulations in the

data. As such, they are generally consistent with models of firm dynamics differing between

groups of firms and allow for a very flexible distribution fit. Relative to commonly used para-

metric alternatives, we find that FMMs are the only distributions able to provide a sufficiently

good fit to the data. A Gains From Trade exercise with Portuguese data reveals that only FMMs

approximate the ‘true’ gains reasonably well.
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1 Introduction

Parametric approximations of the productivity distribution are of key importance to various re-

search topics in economics. The mechanisms driving firm-level dynamics in aggregate growth

models, for instance, are determined by the parametric approximation of the productivity distri-

bution (see, for instance, Luttmer (2007); Arkolakis (2016)). Also, the propagation of firm-level

volatility to the aggregate level mainly relies on a Pareto approximation of the right tail of the

productivity distribution (Gabaix, 2011; di Giovanni et al., 2011; Carvalho and Grassi, 2019). In

the international trade literature, it is recognized that different choices for the productivity distri-

bution significantly affect Gains From Trade (GFT) estimates (Head et al., 2014; Nigai, 2017; Bee

and Schiavo, 2018), and alters the channels through which trade affects welfare (Arkolakis et al.,

2012; Bas et al., 2017; Melitz and Redding, 2015; Fernandes et al., 2018).

To date, however, there is no consensus on what this parametric approximation should be.

Some authors argue a single distributional form such as Pareto (Axtell, 2001), Lognormal (Head

et al., 2014) or Weibull (Bee and Schiavo, 2018) suffices to define the productivity distribution.

Others build on the idea that a single distribution can not adequately capture the heterogeneity

in productivity. This results in combinations of distributions such as the Double-Pareto (Arkola-

kis, 2016), Double-Pareto Lognormal (Sager and Timoshenko, 2019) or Lognormal-Pareto (Nigai,

2017). Nevertheless, Dewitte (2020) demonstrates that none of the distributions that are currently

considered can provide a sufficiently good fit to the data.

This paper argues that heterogeneity in the distribution of firm productivity can be captured

most adequately by Finite Mixture Models (FMMs). A FMM is a weighted sum of an a priori

unknown number of individual densities. As such, it is a semi-parametric approximation that

allows for discrete subpopulations to define the overall distribution. The flexible, semi-parametric

nature of FMMs has advantages both from a theoretical and empirical perspective.

From a theoretical point of view, the generative process of a FMM corresponds to a simple com-

bination of the generative processes of the underlying individual densities. A FMM can therefore

easily generalize, and is generally consistent with, existing models of firm dynamics. First, FMMs

allow to combine a specified generative process of firm dynamics across groups of firms to capture

additional, unspecified heterogeneity. Luttmer (2007), for instance, generalizes his single-sector
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model with a finite mixture specification to a multi-sector model, to capture additional hetero-

geneity across industries and obtain a satisfactory fit to the data. Similarly, Rossi-Hansberg and

Wright (2007) argue the need to account for cross-sectoral differences in their initial single-sector

model specification to achieve an accurate description of the cross-sectional size distribution of US

firms. Second, a finite mixture specification is generally consistent with the mechanisms considered

to differentiate firm dynamics between groups of firms. The differences in growth rates between

financially constrained and unconstrained firms by Cabral and Mata (2003), for instance, can be

respecified into a finite mixture specification.1 FMMs provide an empirical tool that can account

for dynamics to differ between groups of firms without having, but not excluding the possibility,

to specify the mechanisms that drive these differences a priori. These mechanisms can be left

‘unobserved’.

We illustrate the superior empirical performance of FMMs using a clear statistical framework to

differentiate between a large number (up to 52) of economically relevant parametric distributions.

These distributions are fitted to domestic sales of the population of active Portuguese firms in

2006.2,3 A Kolmogorov-Smirnov test reveals that only FMMs provide a distribution fit that is not

rejected by the data. Currently considered distributions such as the Lognormal, Lognormal-Pareto,

and Double-Pareto Lognormal are found to underfit the data. The Akaike and Bayesian Information

Criteria (AIC and BIC) show that the performance of FMMs is not the result of over-fitting.

FMMs outperform other distributions in the ability to capture heterogeneity in the data. We

demonstrate how the current focus on improving the fit to the left and/or right tail of the data

can worsen the fit to the bulk of the data. The semi-parametric nature of FMMs allows them to

approximate the complete empirical distribution. FMMs accurately capture the bulk of the data

in addition to the left and right tail of the distribution. As the Double-Pareto Lognormal and

1Additionally, firm dynamics are argued to differ between groups of firms depending on whether or not they are
financially constrained (Cooley and Quadrini, 2001; Cabral and Mata, 2003; Desai et al., 2003; Albuquerque and
Hopenhayn, 2004; Clementi and Hopenhayn, 2006; Angelini and Generale, 2008), innovate (Costantini and Melitz,
2008; Atkeson and Burstein, 2010), add or drop products (Klette and Kortum, 2004; Lentz and Mortensen, 2008),
add or drop management layers (Caliendo and Rossi-Hansberg, 2012; Caliendo et al., 2020), incur specific market
penetration costs (Arkolakis, 2016) . . .

2As is common in the literature, we capture heterogeneity in productivity from firm-level sales (Head et al., 2014;
Nigai, 2017; Bee and Schiavo, 2018). See also section 4.

3Having access to a representative dataset on the sales distribution allows us to evaluate the performance of
parametric distributions on the complete productivity distribution as well as to focus on both the left and right tail.
Moreover, it insulates us from erroneous conclusions due to truncated or unrepresentative data in the left tail of the
distribution (Perline, 2005).
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Lognormal-Pareto distributions can be interpreted as constrained general mixture models, their

underfitting of the data indicates that the constraints imposed are not warranted from a statistical

point of view.

We demonstrate the economic relevance of our findings for Gains From Trade4 calculations in

heterogeneous firms models à la Melitz (2003). We contribute to the literature providing quantit-

ative expressions necessary to calibrate a heterogeneous firms model for all distributions considered

and illustrate the straightforward implementation of FMMs into such models. Our calibration exer-

cise reveals that when reducing variable trade costs by two-thirds, only FMMs can track the ‘true’

GFT (obtained from the empirical distribution) closely while GFT obtained from commonly used

parametric alternatives significantly deviate from these ‘true’ GFT. We demonstrate that the FMM

performance is not a trivial implication of an improved fit to the data. Rather, it demonstrates

the ability of FMMs to closely approximate the complete empirical distribution, i.e., to capture

heterogeneity in the bulk of the distribution in addition to the heterogeneity in the tails. As a

result, FMMs are the only distributional forms able to accurately capture the different channels

through which trade affects welfare.

The paper is organized as follows. In the following section, we start by linking the large

literature on the parametric approximation of size distributions, spanning the fields of efficiency

analysis, physics, regional and actuarial science, to the productivity distribution literature. From

this overview, it appears that the literature on productivity distributions lacks a clear statistical

framework that differentiates between a sufficiently large number of alternative distributions over

a representative data range. We establish a methodology that uniformly fits many distributions

to complete and truncated data and present evaluation methods to differentiate between these

distributions in section 3. Our database on firm sales is discussed in section 4. We provide our

empirical results in section 5 and discuss the implications of these results for GFT calculations in

section 6. Section 7 concludes.

4Gains From Trade are defined as the changes in welfare, measured as real income, from a change in variable
trade costs.
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2 Firm size distributions: a literature overview

This section provides an overview of the literature related to firm size/productivity distributions.

We discuss why the Pareto distribution can only match the tail of size distributions while single

hump-shaped distributions such as the Lognormal or the Weibull distribution can not accurately

match the tail and bulk of the distribution simultaneously. Size distributions are therefore best ap-

proximated by a combination of distributions, of which we consider three types: mixture, piecewise

composite, and multiplicative distributions. We argue that the flexible, semi-parametric nature of

FMMs is appealing both from a theoretical and empirical perspective.

2.1 Single distributions

The Pareto distribution has been dominating heterogeneous firms models (Melitz, 2003). Even

though the Melitz (2003)-model is not restricted to this distributional choice, its empirical per-

formance (see for instance Axtell (2001); Gabaix (2009); Levy (2009); di Giovanni et al. (2011))

and convenience led to a widespread reliance on the Pareto distribution for social welfare and

economic policy analysis.5 The fit of a Pareto distribution is usually evaluated using its Cumulat-

ive Distribution Function (CDF), which follows a straight line on a log-log scale with the shape

parameter (k) as slope:

GP (x;xmin, k) = 1−
(xmin

x

)k
, x ≥ xmin. (1)

Figure 1 compares a fitted Pareto survival function (CDFc = 1−CDF) with the empirical

survival function of Portuguese firm-level sales in 2006 on a log-log scale for the complete dataset

(upper panel). It is immediately clear that the Pareto distribution is not a good fit for the complete

distribution due to the existence of a hump in the middle.6

The popularity of the Pareto distribution, however, rests on its ability to provide a close fit

5See Arkolakis et al. (2012) for an overview of work relying on the Melitz-Pareto combination.
6See also the Probability Density Function (PDF) in Appendix Figure 2.
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to lower-truncated7 data with predominantly large observations.8 Just as every curved line looks

straight when one zooms in close enough, so too does the distribution of firm sales appear to be

straight when truncated sufficiently. Both the left (lower left panel) and right tail (lower right

panel) exhibit linearity of the CDF and survival functions respectively on a log-log scale, in line

with Pareto behavior in the distribution tails.9 The apparent straight-line behavior of the tails can

therefore just as well be approximated by a surprisingly large class of distributions including, but not

restricted to, (finite mixtures of) the Exponential, Lognormal, Gamma and Weibull distributions.10

Proof of which is the performance of the Lognormal distribution in the lower panels of Figure 1.11

These alternative hump-shaped distributions are claimed to provide a better fit to complete size

distributions (see Bee and Schiavo (2018) for the Weibull and Eeckhout (2004, 2009); Head et al.

(2014); Fernandes et al. (2018) for the Lognormal distribution). In the firm size literature, this

claim is usually supported by comparing their performance with a limited number of alternative

distributions, mostly Pareto, using the low-powered R-squared.12

Even though homogeneous hump-shaped distributions such as the Lognormal can adequately

fit the tail or the bulk of the empirical distribution, they cannot do both simultaneously. This is

easily observable from the upper panel of Figure 1 where the single Lognormal distribution, when

fitted to the complete size distribution, does not fit the right tail of the complete productivity

distribution while matching the bulk rather satisfactorily.

7An upper-truncated version of the Pareto distribution has also been used to explain the existence of zero trade
flows across country pairs (Helpman et al., 2008; Feenstra, 2018) and to demonstrate the relevance of heterogeneous
firms models (Melitz and Redding, 2014). A discussion on the economic relevance of, and an extension of the analysis
to, upper-truncated distributions falls outside the scope of this paper. The methodology set out in this paper allows
to truncate any kind of distribution both from above and/or below (see Online Appendix B).

8Note that the influential paper of Axtell (2001) does not rely on truncated data but unintentionally favors the
Pareto distribution due to data binning (Virkar and Clauset, 2014) and methodological choices (Clauset et al., 2009;
Bottazzi et al., 2015) characteristic of that time.

9The Inverse Pareto distribution is specified as

GIP (x;xmax, k) = 1−
(xmax

x

)−k
, x ≤ xmax.

10Perline (2005) defines this class of distributions within the Gumbel domain of attraction.
11Even though Pareto and Lognormal distributions exhibit qualitatively different behavior in their upper tails,

their apparent quantitative similar behavior in the upper tail for Lognormals with large variance is well-documented
(Malevergne et al., 2011).

12See Clauset et al. (2009) for an explanation as to why the R-squared has low power in a distributional context.
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Figure 1: Empirical survival function of Portuguese domestic sales in 2006 (upper panel) on a
log-log scale with fitted (Inverse) Pareto and (4-component mixture of) the Lognormal distribu-
tions. The lower left and right panels focus on distributions fitted solely to the left and right tail
respectively.
Notes: (Truncated) Distributions are fitted using maximum likelihood methods (cf. infra) to the complete and trun-

cated datasets independently. Tail truncation points are determined by the best-fitting (Inverse) Pareto distributions

according to the Kolmogorov-Smirnov statistic.
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2.2 Combined distributions

As single distributions cannot accurately match both the bulk and the tail(s) of the productivity

distribution, recent research focuses on combinations of distributions. We consider three types of

combinations: mixture, piecewise composite, and product distributions. To our knowledge, mixture

distributions have not been fitted to the productivity distribution. Nevertheless, current applica-

tions of both the piecewise composite and product distributions can be interpreted as constraints

of the more general mixture specification.

2.2.1 Mixture distributions

Finite Mixture Models (FMMs) are essentially a weighted sum of I individual densities mi(·):

g(x|Ψ) =

I∑
i=1

πimi(x|θi), πi ≥ 0,

I∑
i=1

πi = 1 (2)

where I represents the number of components or discrete subpopulations, πi is the probability

of belonging to component i, θi the component-specific parameter vector of density mi(·) and

Ψ = (π1, . . . , πI−1,θ1, . . . ,θI) is the vector of all model parameters (McLachlan and Peel, 2000).

They are also referred to as Latent Class Models (LCM) provided that the number of components,

and thus also the mixing parameter itself, does not have to be specified a priori but is determined

by the data. As such, a finite mixture model provides a semi-parametric approach ideal to fully

capture the heterogeneity of size distributions.13

The aptitude of Finite Mixture models has already been explored in the context of efficiency

analysis (see, for instance, Beard et al. (1997); Orea and Kumbhakar (2004); El-Gamal and Inanoglu

(2005); Greene (2005)), city sizes (Kwong and Nadarajah, 2019) and actuarial losses (Miljkovic and

Grün, 2016). It has, to our knowledge, not been applied to productivity distributions before.

As argued in the introduction, the generative process of a FMM corresponds to a simple com-

bination of the generative processes of the underlying individual densities and can therefore easily

13A semi-parametric approach is to be favored over a nonparametric approach in the case of heavy-tailed distribu-
tions such as firm size. This is because the heavy tails renders nonparametric procedures less efficient (Clauset et al.,
2009; Dewitte, 2020). If the distribution is heavy-tailed, the common nonparametric PDF estimates such as kernel,
projection and spline estimates provide misleading peaks in the ‘tail’ domain or oversmoothe the ‘body’ of the PDF
(Markovich, 2008).
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generalize, and is generally consistent with, existing models of firm dynamics.14

2.2.2 Piecewise composite distributions

Piecewise composite distributions have a probability density specified as:

g(x|θ) =



α1m
∗
1(x|θ1) if c0 < x ≤ c1

α2m
∗
2(x|θ2) if c1 < x ≤ c2

...
...

αIm
∗
I(x|θI) if cI−1 < x ≤ cI

(3)

where ∀i ∈ I : m∗i (x|θi) = mi(x|θi)∫ ci
ci−1

mi(x|θi)dx
is the probability density function (PDF) of mi(x|θi)

truncated at the cutoffs ci−1, ci. For this distribution to be well-behaved, additional differentiability

and continuity conditions are imposed that determine the value of both component cutoffs (ci) and

probabilities (αi) (Bakar et al., 2015), so that the vector of all model parameters reduces to the

combination of the component-specific parameter vectors: θ = (θ1, . . . ,θI).

While these composite distributions can be constructed based on many individual parametric

distributions, applications mostly focus on Lognormal distributions with Pareto tails. The ‘Inverse

Pareto-Lognormal-Pareto’ distribution has been applied in the city size literature, (Ioannides and

Skouras, 2013; Luckstead and Devadoss, 2017), while the ‘Lognormal-Pareto’ version was applied

by Nigai (2017) to the firm size literature (Kondo et al., 2018). Dewitte (2020) generalizes the

implementation of the piecewise composite distributions to allow for any underlying density in three-

and two- piecewise composite distributions, mainly focusing on Pareto-tailed piecewise composites.

From the distribution specification in equation 3, it can be observed that piecewise composite

distributions can be interpreted as mixtures of truncated densities with component probabilities

restricted to ensure continuity and differentiability (Scollnik, 2007).15 This contrasts with the

14Note that while this paper conceptualizes the generality of FMMs from a generative perspective, it is not able
to provide evidence in favor of any specific generative process. See the methodology section (section 3), Appendix C,
and the conclusion (Section 7) for a more elaborate evaluation of current limitations regarding this paper’s discussion
of (the generative processes of) FMMs.

15This becomes even more clear when we rewrite the specification of the piecewise composite distribution (eq. 3)
as the weighted sum of truncated densities: g(x|θ) = α1I(c0 < x ≤ c1)m∗1(x|θ1) + α2I(c1 < x ≤ c2)m∗2(x|θ2) + . . .+
αII(cI−1 < x ≤ cI)m∗I(x|θI).
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general mixture specification (eq. 2), where component probabilities can be interpreted as the

probability that an individual observation belongs to a certain group of observations. Moreover,

the generative process of piecewise distributions is rather ambiguous. It is, for instance, not clear

yet which firm dynamics could explain the existence of hard cutoffs that separate the Lognormal

from the Pareto distribution.

2.2.3 Product distributions

Alternatively, distributions can be combined into a product distribution: a probability distribution

constructed as the distribution of the product of random variables with separate distributions.

The product distribution mainly used in the literature, the Double-Pareto Lognormal distribution,

results from the product of a Lognormal with a (Double-)Pareto distributed random variable (Reed

and Jorgensen, 2004). This distribution is found to approximate city size distributions well, (Reed,

2002; Giesen et al., 2010), while Sager and Timoshenko (2019) fitted the distribution to Brazilian

export data.

A generative process for this Double-Pareto Lognormal distribution exists (Reed and Hughes,

2002; Reed, 2002; Reed and Jorgensen, 2004) and applies to heterogeneous firms models (Arkolakis,

2016). Interestingly, the Double-Pareto Lognormal distribution can be seen as a structured infinite

mixture of Lognormal distributions (Reed, 2002, p.13).16 The Double-Pareto Lognormal distribu-

tion can therefore be absorbed by the more flexible mixture distributions as specified in equation 2.

Whereas the Double-Pareto Lognormal may suffer from misspecification and/or oversimplification

by imposing a structure on the mixture distribution, a FMM allows the data to determine the

mixture structure needed to capture the heterogeneity present in the data.

3 Methodology

The literature review reveals the myriad of empirical evidence in favor of qualitatively very different

distributions fits to productivity. This paper adds to the literature by proposing a clear statistical

16In the context of firm size this could mean that each age group of firms, with age referring to the time since entry
in the market, is distributed Lognormally at a certain point in time. The reason the overall firm size distribution
is not Lognormal is that these groups of firms have not all been evolving for the same length of time. The overall
distribution of size will be a mixture of Lognormal distributions (across age groups) with time since entry as mixing
parameter. When this mixing parameter is exponentially distributed, firm size will be Double-Pareto Lognormally
distributed.
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framework that differentiates between a sufficiently large number of distributions and evaluates

their fit over a representative data range. This section establishes a methodology that uniformly

fits the large but relevant range of single and combined distributions to the data. We then present

statistical tests to evaluate the distributional fit and differentiate between the fitted distributions.

3.1 Distribution fitting

We rely on Maximum Likelihood (ML)17 over all firms b ∈ B to fit all considered distributions

to the data. We consider the (Inverse) Pareto, hump-shaped distributions (Lognormal, Weibull,

Fréchet, Gamma, Exponential, and Burr), and combinations of these distributions in the form of

mixtures, piecewise composite or product distributions. We limit piecewise composite and product

distributions to available Pareto-tailed extensions of the considered hump-shaped distributions.18

In the case of FMMs, ML is wrapped in an Expectation-Maximization (EM) algorithm to estimate

the component probabilities.

3.1.1 (Inverse) Pareto

The ML estimator for the shape parameter k over all firms b = 1, . . . , B can be obtained as

kIP =

[
1

B

B∑
b=1

ln
xmax
xb

]−1

, kP =

[
1

B

B∑
b=1

ln
xb
xmin

]−1

. (4)

The ML estimator of the scale parameters equals the maximum and minimum observation:

x̂min = min(x), x̂max = max(x), as the likelihood function is monotonically increasing (decreasing)

in xmin (xmax).

17The choice for Maximum Likelihood contrasts with the productivity distribution literature, where popular fitting
techniques rely on the minimization of squared errors between a log-linearization of the theoretical and empirical
PDFs/CDFs (Axtell, 2001; di Giovanni and Levchenko, 2013; Head et al., 2014; Freund and Pierola, 2015; Bas et al.,
2017; Nigai, 2017; Bee and Schiavo, 2018). Such methods, however, might not be apt to fit distribution functions.
For instance, reported parameters in the literature are, to our knowledge, not obtained from a regression procedure
restricted to estimate a properly normalized distribution function. Parameters obtained from an estimation procedure
must result in a probability density function that integrates to 1 over the range from the lower bound up to the upper
bound (due to its normalization properties) (Clauset et al., 2009). While it is possible to incorporate such constraints
in the regression analysis, it has never been reported to our knowledge. Moreover, it is unclear to which extent
the standard errors obtained from these methods are valid (Clauset et al., 2009; Bottazzi et al., 2015). Maximum
likelihood methods do not suffer from such problems.

18See Appendix Tables 1, 2 and 3 for an overview of the specifications for all distributions considered. Considered
distributions are chosen based on their occurrence in the economic literature.
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3.1.2 Hump-shaped, piecewise composite and product distributions

The maximum likelihood of the considered hump-shaped distributions (Lognormal, Weibull, Fréchet,

Gamma, Exponential, and Burr) is straightforward, and estimation methods are widely available.

We also consider piecewise composite distributions as Pareto-tailed extensions of these hump-shaped

distributions. The ML estimator of these distributions has no closed-form and needs to be ap-

proached numerically, see Dewitte (2020). Pareto-tailed extensions in the form of product distribu-

tions, on the other hand, are less generally available. We consider the Double-Pareto Lognormal

distribution (Reed and Jorgensen, 2004). This distribution is the result of multiplying a Double

Pareto, used by among others Arkolakis (2016), with a Lognormal distribution. Reducing the

parameter space of the Double Pareto allows us to consider the Left- and Right-Pareto Lognor-

mal distribution, respectively. The ML estimator has no closed-form solution and needs to be

approached numerically (Reed and Jorgensen, 2004).

3.1.3 FMM

Direct maximum likelihood estimation of a FMM (see eq. 2) is not straightforward since the number

of components I is a priori unknown. The log-likelihood function can be written as

logL(x|Ψ) =
B∑
b=1

I∑
i=1

zbi [log(πi) + log(mi(xb|θi))] , (5)

where zbi is an unobserved component indicator equal to one if the observation xb originates

from subpopulation i and zero otherwise. Two steps need to be taken iteratively in order to be able

to maximize this equation. The Expectation (E)-step of the s-th iteration consists of determining

the conditional expectation of eq. 5 given the observed data and the current parameter estimates

from iteration s− 1:

Q(Ψ|Ψ(s−1)) = E
[
logL(x|Ψ)|x,Ψ(s−1)

]
=

B∑
b=1

I∑
i=1

π
(s)
bi [log(πi) + log(mi(xb|θi))] , (6)
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where the missing data zni is replaced by the posterior probability that xb belongs to the ith

mixture:

π
(s)
bi = E

[
zbi|xb,Ψ(s−1)

]
=

π
(s−1)
i mi(xb|θ

(s−1)
i )∑I

i=1 π
(s−1)
i mi(xb|θ

(s−1)
i )

. (7)

The Maximization (M)-step then, consists of maximizing the Q-function over the parameter

vector Ψ:

Ψ(s) = max
Ψ

Q(Ψ|Ψ(s−1)). (8)

Each iteration updates the E- and M-step until the algorithm converges (See Miljkovic and

Grün (2016) and McLachlan and Peel (2000) for a more elaborate overview).

The validity of the proposed estimation technique does not depend on its ability to identify the

unobserved component indicator zbi. FMMs can be utilized in two ways. First, they can be used as

a semi-parametric, flexible approximation of the overall distribution. Second, they are model-based

clustering methods when a certain distribution is imposed (Fop et al., 2018; Grün, 2018). While

both applications rely on the idea that discrete subpopulations define the overall distribution, the

semi-parametric approximation does not claim to correctly identify these subpopulations (zbi). This

paper relies on FMMs as a semi-parametric approximation of the productivity distribution. See

Online Appendix D for a more elaborate discussion on the difference between both applications

and their relevance for the current analysis.

3.2 Distribution evaluation

We use distinct criteria to differentiate between the distributions. First, we consider whether the

proposed parametric distribution provides a sufficiently good fit to the data. We then differentiate

between distributions using information criteria.

Goodness of fit We evaluate the parametric distributions by summarizing the distance between

the empirical and parametric CDF by the 1- and ∞-norm:

12



S0 =
∑
y

∆0(y), T 0 = sup
y

∆0(y), (9)

where ∆0(y) is the normalized absolute deviation:

∆0(y) =

∣∣∣∣∣ 1

B

B∑
b=1

I(xb ≥ y)−
∫ ∞
y

g(x|Ψ)dx

∣∣∣∣∣ . (10)

I(A) is the indicator of event A and 1 −Gy (x|Ψ) =
∫∞
y g(x|Ψ)dx is the complementary CDF

evaluated at y. The test statistic T 0 corresponds with the Kolmogorov-Smirnov (KS) test statistic,

quantifying the maximum distance between the empirical and parametric CDF. This Kolmogorov-

Smirnov test statistic allows us to provide statistically underpinned claims regarding the accuracy

of the distributional assumption with respect to its empirical counterpart. Whereas the ∞-norm

contains only information on the largest distance, the 1-norm provides information on the distance

between both distributions over the complete distributional space, weighting all distances equally.

As we rely on estimated parameters, asymptotic distributions are not available for the test

statistic. We therefore rely on a parametric bootstrap:

1. Assume B i.i.d. random variables with distribution G(·|Ψ);

2. Estimate the parameters Ψ of the distribution using MLE and calculate the complementary

CDF, 1−Gy (x|Ψ), and the test statistic t ∈
{
S0, T 0

}
;

3. Draw N bootstrap samples of size B from G(·|Ψ̂);

4. For each sample of the parametric distribution, calculate the bootstrapped test statistics

t∗ ∈
{

(S0̃)∗, (T 0̃)∗
}

;19

5. The p-value is then defined as

p̂ =
1

N + 1

[
N∑
n=1

I (t∗n ≥ t) + 1

]
. (11)

19Note that we do not re-fit the parametric distribution to the bootstrap sample. The vastness of the dataset
at our availability in the empirical section results both in a large computational burden and a precise estimation of
the distribution parameters. The influence of not refitting the parametric distribution to the bootstrap sample is
therefore negligent.
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Therefore, the bootstrapped p-value should be interpreted as ‘the likelihood of observing a

deviation between the empirical and parametric CDF as large as t under the null hypothesis’,

allowing us to evaluate whether observed data originates from the specified distribution. A rejection

of the null hypothesis indicates the data is under-fitted.

Information Criteria We differentiate between distributions based on the log-likelihood, the

Akaike or Bayesian Information Criteria. When possible, we can differentiate between two distri-

butions based on the ratio of their likelihoods:

LR =
B∑
b=1

ln
g1(xb; ·)
g2(xb, ·)

(12)

with g1,2 the probability densities of the respective distributions.If these distributions are non-

nested, the test statistic amounts to the sample average of this ratio standardized by a consistent

estimate of its standard deviation (Vuong, 1989). The null hypothesis states that both distributions

are equally far (in the Kullback and Leibler (1951) divergence/relative entropy sense) from the true

distribution. Our test statistic will follow (asymptotically) a Gaussian distribution with mean zero

if it is true. If the null is false, and g1(·) is closer to the truth, the test statistic diverges to +∞

with probability one. If g2(·) fits the data better, it diverges to −∞ (Vuong, 1989).

To avoid overfitting, the Akaike Information criterion penalizes the log-likelihood information for

the number of parameters. It is defined as AIC = 2np− 2ln(L) with np the number of parameters

and ln(L) the log-likelihood. Moreover, the AIC is asymptotically equivalent to leave-one-out cross-

validation (Stone, 1977). Similarly, the Bayesian Information criterion corrects for the number of

parameters as BIC = npln(B) − 2ln(L). Differentiation between distributions relies then on the

relative distance of the BICs: ∆BIC = BIC1−BIC2. The value of ∆BIC implies strong evidence

in favor of distribution 1 if ∆BIC > 10, moderate evidence if 6 < ∆BIC ≤ 10 and weak evidence

if 2 < ∆BIC ≤ 6 (Kass and Raftery, 1995). BIC statistics are considered consistent for selecting

the number of mixture components when the mixture model estimates a density (McLachlan and

Peel, 2000; Celeux et al., 2018) and are therefore favored over AIC statistics.
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4 Data

We use firm-level data from Portugal to evaluate the empirical performance of FMMs compared

to “traditional” distributions such as the Log-normal or Pareto distribution. The main source of

information is Sistema de Contas Integradas das Empresas (SCIE, Enterprise Integrated Accounts

System) in the year 2006, a dataset covering the universe of active Portuguese firms that has been

used already by, among others: (Carreira and Teixeira, 2016; Dias et al., 2016; Fernandes and

Ferreira, 2017; Bastos et al., 2018; Fonseca et al., 2018).20 It contains data both on firm-level sales

and number of employees. Moreover, each firm has a unique identification number that allows us

to link this dataset with a dataset on international trade.

The firm size distribution of Portugal was earlier the object of study by Cabral and Mata (2003),

who relied on a longitudinal matched employer-employee dataset covering all business units with

at least one wage earner in the Portuguese economy (Quadros de Pessoal). They provide evidence

that the firm size distribution of Portugal is not very different from other countries such as France,

the United States, Germany, Japan and the United Kingdom.

As is common in the literature, we capture heterogeneity in productivity from the distribution of

firm-level sales (Head et al., 2014; Nigai, 2017; Bee and Schiavo, 2018). We can rely on the distribu-

tional relation between positive domestic sales and productivity, under specific model assumptions

(Mrázová et al., 2015; Nigai, 2017; Dewitte, 2020), to approximate the productivity distribution.

In a heterogeneous firms model with Constant Elasticity of Substitution (CES) demand, sales (r)

will follow the same distribution as productivity (x) up to a change in distributional parameters

(r ∼ xσ−1) if the productivity distribution is closed under power-law transformations.21

Our reliance on domestic rather than total sales corrects for the impact of international trade on

the firm size distribution (di Giovanni et al., 2011). We reduce our dataset discarding self-employed

companies22, resulting in a dataset covering the positive domestic sales of 299,935 Portuguese firms

in 2006. We note that parameter estimates of common distributons such as the Lognormal or

Pareto distribution obtained from this data are similar to earlier reported parameter estimates

20A comparison between SCIE and the OECD SBDS database proves the full coverage of firms in our dataset for
the Portuguese economy (see Online Appendix Table 6).

21Most common distributions used in the economic literature are closed under power-law transformations (see
Online Appendix Table 1).

22Disregarding individual companies renders our dataset more comparable with earlier datasets used to evaluate
productivity distributions such as the ORBIS database used by Nigai (2017).
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obtained from different datasets (Head et al., 2014; Nigai, 2017; Sager and Timoshenko, 2019; Bee

and Schiavo, 2018).

5 Results

We fit the distributions to Portuguese domestic sales in the year 2006. We initially focus on fitting

the Pareto, Lognormal, combinations of Pareto and Lognormal, and up to 5-component mixtures

of Lognormals to the complete data.23 This proves to be sufficient for our main message. We show

that our results hold when focusing on the tails of the data, can be extended to other economically

relevant distributions, are robust to sample selection and outliers, also hold in an out-of-sample

validation and cross-validation test, and can be externally validated on city size data.

5.1 Complete data

Single distributions cannot sufficiently capture the heterogeneity of the productivity distribution.

Table 1 displays the selected distribution fits ordered according to their log-likelihood. One im-

mediately observes that single parametric distributions produce the lowest log-likelihood values.

This demonstrates the need, as the evolution of the literature indicates (Nigai, 2017; Sager and

Timoshenko, 2019), to combine distributions in order to adequately capture heterogeneity in pro-

ductivity. Still, such combinations continue to underfit the data (see also Dewitte (2020)). The

Kolmogorov-Smirnov test statistic (T 0) indicates that the deviation between the empirical and

parametric distribution is too large for both the Lognormal-Pareto and Double-Pareto Lognormal

distribution, rejecting the hypothesis that the observed data could originate from these parametric

distributions. The cumulative error of the CDF fit (S0) indicates that this deviation is consistent

over the complete range of the data and unlikely to originate from outliers.

Finite mixture models are the sole semi-parametric specifications that are not rejected by, and

therefore do not underfit, the data. Whereas 3-component Lognormal only improves the distri-

bution fit relative to commonly used parametric alternatives, the 4- and 5-component Lognormal

distributions also result in a distribution fit that is not rejected by the data.

23Corresponding parameter estimates are reported in Online Appendix Table 8.
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Table 1: Selected distribution fits to Portuguese domestic sales in 2006.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b Loglike RAIC RBIC

5-comp. Lognormal 14 0.18 0.11 12,776 1 2+++

(0.10;0.25) (0.08;0.32)

4-comp. Lognormal 11 0.19 0.11 12,770 2 1

(0.09;0.25) (0.08;0.32)

3-comp. Lognormal 8 0.29 0.34 12,723 3 3+++

(0.10;0.24)** (0.09;0.32)**

Double-Pareto Lognormal 4 0.66 0.80 12,429 4 4+++

(0.09;0.25)*** (0.08;0.33)***

2-comp. Lognormal 5 0.53 0.71 12,401 5 5+++

(0.10;0.24)*** (0.09;0.32)***

Inv. Pareto-Lognormal-Pareto 4 0.81 1.01 12,231 6 6+++

(0.09;0.26)*** (0.08;0.34)***

Inv. Pareto-Lognormal 3 3.02 4.26 9,198 7 7+++

(0.09;0.24)*** (0.08;0.31)***

Lognormal-Pareto 3 2.56 3.78 8,721 8 8+++

(0.09;0.25)*** (0.08;0.32)***

Left-Pareto Lognormal 3 3.23 4.91 8,059 9 9+++

(0.10;0.25)*** (0.09;0.32)***

Right-Pareto Lognormal 3 2.82 4.38 8,028 10 10+++

(0.09;0.25)*** (0.08;0.32)***

Lognormal 2 2.93 5.03 7,372 11 11+++

(0.10;0.25)*** (0.08;0.33)***

Pareto 2 48.34 68.18 -436,227 12 12+++

(0.09;0.25)*** (0.08;0.33)***

Notes: All distributions fitted using Maximum Likelihood.
Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic
with 999 replications. ∗∗∗, ∗∗, ∗ indicate significance of this test at 1%, 5% and 10% respectively.
+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms
of BIC (∆BIC) providing strong evidence in favor of the first-ranked distribution (∆BIC > 10), moderate
evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.

a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.

17



Figure 224 provides a visual insight into the numerical results of Table 1. It plots the normalized

absolute deviation between the empirical and parametric CDF. The figure reveals the large devi-

ations of a single Lognormal distribution relative to both bulk and tails of the data. Augmenting

the Lognormal distribution with a Pareto right tail as Nigai (2017) improves the fit marginally.

While it does result in smaller deviations in the distribution’s right tail, this comes at the cost of

larger deviations in the left tail of the distribution and an almost equally large deviation in the

bulk of the distribution as the Lognormal distribution. The best-fitting Pareto-tailed Lognormal,

the Double-Pareto Lognormal, improves the distribution fit and exhibits smaller deviations over

the complete data range. Still, we observe significant deviations from the data both in the bulk and

the right tail of the data relative to the 4-component Lognormal, which displays small deviations

over the complete data range.

This tail performance becomes even more apparent when considering the Quantile-Quantile

(QQ)-plot in Figure 3. A QQ-plot allows, relative to Figure 2, to focus on the performance in

the distribution’s right tail. Whereas it is difficult to differentiate the tail performance of the

4-component Lognormal relative to the Lognormal-Pareto in Figure 2, the QQ-plot displayed in

Figure 3 shows the divergence of the Lognormal-Pareto for large values of domestic sales. In

contrast, the 4-component Lognormal distribution maintains a relatively solid fit.

The superior performance of FMMs results from their focus on fitting the complete distribution.

As demonstrated in Figure 2 for the Lognormal-Pareto distribution, a focus on one part of the

distribution (the right tail) can improve the fit in that part and worsen the fit in another part of

the distribution (the left tail) relative to the Lognormal. FMMs aim to provide a good fit to the

complete distribution by allowing for heterogeneity in productivity across components. We display

the PDF of these individual components of the 4-component Lognormal in Figure 4.25 We observe

that to capture the heterogeneity observed in the data, the 4-component Lognormal mainly relies

on one component (component 1) to capture the heavy tails of the distribution while components

2, and 4 mainly capture heterogeneity in the bulk of the distribution. Component 3 appears to

match some extra fatness in the upper tail. As such, the results of FMMs caution against focusing

24This representation of the results is essentially a visually more interpretable version of the Probability-Probability
plot (see Online Appendix Figure 3).

25See Online Appendix Figure 5 for an overview of the individual components going from a 1- up to a 5-component
Lognormal.
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Figure 2: Normalized Absolute Deviation between the empirical and Double-Pareto Lognormal,
Lognormal-Pareto, Lognormal and 4-component Lognormal CDFs over the complete range of do-
mestic sales in Portugal, 2006.
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Figure 3: Quantile-Quantile plot for the Double-Pareto Lognormal, Lognormal-Pareto, Lognormal,
and 4-component Lognormal over approximately 99.99% of domestic sales in Portugal, 2006.
Note: Quantiles are capped at 600 for expositional purposes, leaving out approximately the upper 0.01% of the data.
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on fitting the tails of a distribution and demonstrate the importance of capturing heterogeneity in

the bulk of, and consequently the complete, distribution.

Figure 4: Probability density function of the 4-component Lognormal and its probability-weighted
individual components fitted to Portuguese firm productivity in 2006. The lower left and right
panels focus in on the left and right tail respectively.
Notes: Productivity is measured as domestic sales (relative to the mean) to the power of 1/(σ − 1) with σ, the

elasticity of substitution between varieties, set to four. Distributions are fitted using maximum likelihood methods

(cf. infra) to the complete dataset. For expositional purposes, the upper panel is restricted to productivity values

between 0 and 2.5.

The focus on the complete distribution does not result in FMMs over-fitting the data. We

evaluate the ability of FMMs to correctly capture the heterogeneity observed in the data using

information criteria. The AIC and BIC penalize the log-likelihood for the number of parameters,

indicating whether or not an increase in log-likelihood results from over-fitting the data. BIC stat-

istics are considered consistent for selecting the number of mixture components when the mixture

model is used to estimate a density (Celeux et al., 2018; McLachlan and Peel, 2000). The BIC

values indicate that the 4-component Lognormal provides the best fit to the data. The increase in

log-likelihood obtained from an additional, fifth component, is therefore not sufficient to justify the

associated larger number of parameters. See also Online Appendix Figure 6 for an overview of the

evolution of the distributional fit going from a 1- up to a 5-component Lognormal.

Overall, we demonstrate that the performance of FMMs is not the result of over-fitting but of

FMMs being able to capture heterogeneity in productivity of which other distributional forms are

not capable. The structure imposed on a general mixture specification to attain specific piecewise
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composite (in case of the Lognormal-Pareto) or product (in case of the Double-Pareto Lognormal)

distributions (see section 2.2) is, therefore, not warranted.

5.2 Truncated data

Clearly, allowing for heterogeneity in distributions provides a better fit when fitting the complete

distribution, but what when we only focus on the tails? This is most interesting from the Pareto

point of view, which is often claimed to be a good fit to the right tail of the productivity distribu-

tion.26

Online Appendix Table 9 displays the results of fitting the (Inverse) Pareto to the (left) right tail

of the distribution using the methods described in online Appendix B. We recovered the best-fitting

truncation point for the (Inverse) Pareto distribution, assigning 8.53% and 6.07% of the data to the

left and right tail, respectively. We reduced our dataset according to these truncation parameters

and fitted truncated mixtures of Lognormals to both tails of the distribution for comparison. This

approach puts the Pareto distribution twice in the advantage. First, it is free from a parametric

specification for the bulk of the distribution. Second, the truncation parameter is chosen in function

of the best-fitting (Inverse) Pareto distribution. As a result, the (Inverse) Pareto and (mixtures of)

the Lognormal provide a good fit to the tails according to the Kolmogorov-Smirnov test.

Nevertheless, despite the advantage for the (Inverse) Pareto distribution, it seems that (mixtures

of) the Lognormal distribution provide a significantly better fit to the tails of the data. (Mixtures

of) the Lognormal distribution have a higher log-likelihood and lower deviation from the empirical

CDF than the (Inverse) Pareto distribution. This results in the likelihood ratio test significantly

rejecting Pareto in favor of (mixtures of) the Lognormal distribution, which is in line with earlier

results reported in related literature (Clauset et al., 2009). When correcting for the number of

parameters, the BIC reveals that the single Lognormal distribution is sufficient to fit the tail only.

A mixture of Lognormals insufficiently improves the fit to justify the corresponding increase in the

number of parameters.

26Note that this argument carries the normative value that obtaining a good fit for larger firms is absolute,
regardless of the implications for the fit to smaller firms.
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5.3 Robustness and Extensions27

We scrutinize the robustness of our results with several additional analyses. First, we examine

whether our results are not caused by sample selection. To this end, we restrict our dataset to the

manufacturing sector only (see Online Appendix Table 10) and find the performance of FMMs to

improve relative to Pareto-tailed distributions. Second, we inspect whether our results are not due

to outliers in the tails of the distribution by discarding the 1,000 smallest and largest observations

from our dataset. Results in Appendix Table 11 again confirm the superiority of FMMs. Third,

the AIC reported in Table 1 is asymptotically equivalent to leave-one-out cross-validation (Stone,

1977). We perform a robustness check on the out-of-sample predictive accuracy of our results using

(i) a Monte Carlo Cross-Validation (MCCV), (ii) k−fold cross-validation, and (iii) an out-of-sample

test for model selection. The results of this exercise (see Online Appendix Table 12) confirm the

main results and demonstrate that a mixture of Lognormals improves the model fit without over-

fitting the data. Finally, we also provide external validation, in line with Nigai (2017), by fitting the

considered distributions to the U.S. Census 2000 city size distribution data.28 Appendix Table 13

provides the test results, demonstrating that the city size distribution is neither Lognormal, Pareto,

nor Pareto-tailed Lognormal. It is best approximated by a 2-component Lognormal distribution

(according to the BIC).

The superior performance of FMMs is not limited to the Lognormal distribution. Appendix

Table 7 displays the results of fits to the complete data extending to FMMs of distributions often

used in the economic literature such as the Exponential, Gamma, Weibull, Burr, and Fréchet

distribution. Most of these mixtures are not able to match the performance of the Lognormal.

Only the Burr distribution provides an equivalent fit to the PDF and CDF.29 In comparison,

commonly used parametric alternatives as the Double-Pareto Lognormal (Sager and Timoshenko,

2019) and the Lognormal-Pareto (Nigai, 2017) distribution are ranked sixteenth and thirty-first,

respectively, according to BIC, out of 52 considered distributions.

The consistent excellent performance of the Lognormal distribution can be motivated from two

27See Online Appendix C for a full discussion of the robustness tests and extensions of the results.
28This dataset has been subject to an extensive debate in the city size literature, includ-

ing the discussion between Eeckhout (2004, 2009) and Levy (2009), and is available at ht-
tps://www.aeaweb.org/aer/data/sept09/20071478 data.zip.

29The Burr distribution fails to match higher moments of the data, however. See also section 6.
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perspectives. From the perspective of overall fit, a mixture of (log-) normal distributions with

sufficient components is assumed to be able to approach all distributions (McLachlan and Peel,

2000). From a generative perspective for individual components, the Lognormal distribution is the

realization of applying the Central Limit Theorem (CLT) in the log domain: firm heterogeneity

will approximately be Lognormal if it is the multiplicative product of many independent random

variables. This corresponds with extensions of heterogeneous firms models à la Melitz (2003) that

consider multi-dimensional firm heterogeneity, taking into consideration the product dimension

(Bernard et al., 2009) or uncertainty in demand and/or supply (see for instance De Loecker (2011);

Bas et al. (2017); Sager and Timoshenko (2019); Gandhi et al. (2020)).

6 Gains From Trade implications

To evaluate the economic relevance of our finding, that FMMs are the only distributions not rejected

by the data, we perform a stylized GFT exercise along the lines of Melitz and Redding (2015); Bee

and Schiavo (2018).30 This exercise allows us to demonstrate that (i) only GFT obtained from

a FMM are not rejected by the data, (ii) these results are not a trivial implication from the

distributional fit, and (iii) FMMs are the only distributional forms that accurately capture the

different channels through which trade affects welfare.

Our setup is a two-country symmetric heterogeneous firms model with a finite number of firms.31

The parameterization of our model is standard (Head et al., 2014; Melitz and Redding, 2015; Bee

and Schiavo, 2018). We work with two symmetric countries i and j and choose labor in one country

as the numeraire, so that W i = W j = 1. We choose fixed entry costs fe = 0.545 and set fixed

costs equal to one (f ii = f ij = 1). The elasticity of substitution is set to four. The productivity

distribution is assumed exogenous.32

Finally, we need to capture the heterogeneity distribution. Assuming a parametric distribution

and under the assumption of an infinite number of firms, we can calculate the necessary analytical

30Note that we rely on a stylized model that does not represent reality to focus specifically on the performance
between parametric distributions.

31See Appendix E for a full workout of the model.
32If the data generating process of FMMs is an endogenous response to fundamental shocks, this exogeneity

assumption results in policy counterfactuals that might not capture some first-order variation of the subsequent
response to the shock and therefore to a biased quantification of the gains from trade. See for an example Brooks
and Dovis (2020) in the case of credit-constrained firms.
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expressions using the distributional parameters from our empirical analysis to capture heterogeneity.

Following Nigai (2017), we can also capture heterogeneity directly from the empirical, finite data.

To compare GFT obtained assuming a parametric distribution and GFT obtained from the finite

data, we perform a parametric bootstrap. This parametric bootstrap generates a range of finite

sample estimates under the hypothesis that the observed data is generated by a certain parametric

distribution, which allows for a comparison with the observed finite data (Dewitte, 2020).

We calculate the changes in welfare due to a trade shock (Gains From Trade), which can be

written as log changes in real per-capita income due to an exogenous increase in variable trade costs

τij to τ ′ij . This can be further decomposed into the channels through which trade affects welfare:

trade costs (τ ij), the number of firms (M i), the probality of successful entry into the domestic

market (m0
ωii∗), the average productivity of firms exporting from i to j (mσ−1

ωij∗
)33 and the bilateral

trade share (λij):

100× ln(Wi)′

Wi
= 100×−ln(P i)′

P i
(13)

= 100×−

[
ln

(τ ij)′

(τ ij)
− 1

σ − 1

(
ln

(M i)′

M i
− ln

(m0
ωii∗)

′

m0
ωii∗

+ ln
(mσ−1

ωij∗
)′

mσ−1
ωij∗

− ln(λij)′

λij

)]
.

Our exercise reduces the variable trade costs from τ ij = 3 to (τ ij)′ = 1. The obtained GFT are

displayed in Figure 5. This figure presents the parametric bootstrapped distribution of GFT using

box plots delineating the 5th, 25th, 50th, 75th, and 95th quantile. The vertical blue line indicates

empirical GFT. Green circles are the average parametric finite sample GFT, and yellow diamonds

show the parametric plug-in population estimates of GFT.

We observe that mixture models are the only distributions able to provide an approximation of

GFT that is not rejected by the data. Heavy-(Pareto-) tailed distributions significantly overestimate

GFT, while relatively light-tailed distributions underestimate GFT. The distributions in Figure 5

are ordered according to their distance from the empirical GFT. As such, we can interpret the

4-component Lognormal distribution as providing the closest fit to the GFT obtained from the

empirical distribution. The empirical values imply an increase in real income per capita of 19.01%

33We define average productivity here as average productivity unconditional on successful entry, in contrast to the
definition conditional on successful entry in (Melitz, 2003, p.1702).
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Figure 5: Gains from a reduction in variable trade costs τ ij = 3 to (τ ij)′ = 1.
Notes: Box-plots display the 5th, 25th, 50th, 75th, and 95th quantile of the asymptotic distribution of parametric

finite sample GFT obtained from a bootstrap with 999 replications. Yellow diamonds represent the parametric plug-in

(population) estimates of GFT. Green circles are the average parametric bootstrapped finite sample GFT and the

empirical sample GFT are indicated by the vertical blue line. All sample values were obtained from a sample of

299,935 firms.
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when reducing variable trade costs from 3 to 1. The 4-component Lognormal distribution closely

predicts this to be 19.02%, as can be deduced from the parametric plug-in population estimates

(yellow diamonds). Moreover, the close fit results in an excellent approximation of the empirical

GFT, as can be deduced from the parametric bootstrapped finite sample GFT being at least as

small as the empirical GFT in more than 5% of the cases (the box-plot overlaps with the vertical

blue line). This contrasts with the simple Lognormal distribution underestimating the empirical

GFT by about 11%, predicting GFT to amount to 16.8%, and the Lognormal-Pareto distribution

overestimating the empirical GFT by approximately 13%, predicting a 21.55% increase in welfare.34

Our results confirm the findings of Dewitte (2020) that GFT obtained from currently considered

distributions are unlikely to materialize and emphasize the importance of considering FMMs to

capture heterogeneity in productivity.

These results are not a trivial implication of the distributional fits reported in the previous

section. A good fit to the CDF does not necessarily imply that higher moments of the distribution

are well approximated,35 while Dewitte (2020) demonstrates that higher distributional moments

are essential when evaluating distributional performance regarding GFT predictions.

Therefore, a ranking of the distributions according to GFT performance (see Figure 5) does not

closely follow the ranking of the fit to the 0th moment (the CDF) of the distribution (see Table 1).

The Double-Pareto Lognormal, for instance, provides a closer fit to the empirical CDF than the

Right-Pareto Lognormal, but provides worse GFT approximations. This can be attributed to the

relatively heavy tail of the Double-Pareto Lognormal, resulting in a large error when calculating

higher moments of the distribution. A ranking of distributions based on the fit to average lower-

truncated sales proves to be a better indicator of GFT performance, as can be deduced from the

maximal normalized absolute deviation between the empirical and parametric average of lower-

truncated sales, T 1, in online Appendix Table 7 (Dewitte, 2020).36

34A comparison in percentage rather than absolute differences is preferred due to the stylized model this calibration
exercise relies on. Absolute differences are likely more sensitive to model specification and parametrization. See
Costinot and Rodŕıguez-Clare (2014) for a discussion on the sensitivity of GFT on model specifications.

35Only when a distribution provides a sufficiently good fit to the CDF (according to the Kolmogorov-Smirnov
distance), one can be ascertained higher moments of the distribution will be well approximated.

36We evaluate the parametric average of lower-truncated sales by summarizing the distance between the empirical
and parametric average of lower-truncated sales by the 1- and ∞-norm:

S1 =
∑
y

∆1(y), T r = sup
y

∆1(y),
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We demonstrate this reasoning more clearly by evaluating the channels through which the

differences in GFT between distributions come about. Table 2 reports the weighted components

of welfare gains (see eq. 13) for all considered distributional forms. We observe that the deviation

of the parametric results compared to the empirical distribution is relatively small for changes in

the number of firms and the probability of successful entry into the domestic market. The largest

differences can be found for the changes in the average productivity of exporting firms and for the

trade shares. Heavy-tailed distributions largely underestimate the positive effect of the increasing

average productivity of exporting firms (which relates to average sales (Dewitte, 2020)) and the

negative effect of the increasing bilateral trade shares compared to the empirical distribution, while

the reverse is true for lighter-tailed distributions. The Lognormal-Pareto distribution, for instance,

predicts the weighted average productivity of exporting firms to increase by 2%, an underestimation

by ±900%, and the weighted bilateral trade shares by 90%, an underestimation by ±20%. The

Lognormal distribution, on the other hand, predicts the weighted average productivity of exporting

firms to increase by 53%, an overestimation by ±165%, and the weighted bilateral trade shares by

144%, an overestimation by ±31%.

The distribution-dependent differences in the reaction of the bilateral trade shares to changes in

variable trade costs can be traced back to the aggregate trade elasticity.37 It is a well-known result

that the Pareto assumption results in a trade elasticity that is constant across export markets,

because the importance of the extensive margin elasticity in the overall trade elasticity is not

affected by the difficulty of the market (Chaney, 2008; Bas et al., 2017). Similarly, heavy-tailed

distributions such as the Double-Pareto Lognormal (Sager and Timoshenko, 2019) or Lognormal-

where ∆1(y) represents the normalized absolute deviation:

∆1(y) =

∣∣∣ 1B ∑B
b=1 I(xb ≥ y)x1b −

∫∞
y
x1g(x|Ψ)dx

∣∣∣
1
B

∑B
b=1 x

1
b

.

.
While this normalized absolute deviation provides an indication of the distance between the empirical and para-

metric lower-truncated average, it is not informative regarding the accuracy of the distributional assumption. The
calculated statistics do not generalize to upper-truncated averages. We are grateful to an anonymous referee for
pointing this out. A parametric bootstrap is relied upon to provide the asymptotic distribution of the calculated
statistics.

37The aggregate trade elasticity can be obtained as γij = 1− σ︸ ︷︷ ︸
intensive margin

− e(σ−1)ωij∗∫∞
ωij∗ e

(σ−1)ωbdG(ωb)︸ ︷︷ ︸
weights

× d lnM ij

dlnτ ij︸ ︷︷ ︸
extensive margin

,

where dlnMij

dlnτij
=

eω
ij∗

g(ωij∗)
1−G(ωij∗)
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Pareto (See Figure 7 in Online Appendix) distribution predict a quasi-constant trade elasticity. This

invariance of the trade elasticity implied by heavy-tailed distributions results in an underestimation

of the reaction of the bilateral trade shares to a change in variable trade costs. The light-tailed

Lognormal distribution, on the other hand, attaches relatively much importance to the extensive

margin elasticity and, as a result, overestimates the change in bilateral trade shares due to trade

liberalization. The aggregate trade elasticity predicted by the 4-component FMM model nicely

fits in between the predictions of these light- and heavy-tailed distributions, as can be observed in

Figure 7. This, in turn, allows FMMs to accurately predict the change in bilateral trade shares for

a change in variable trade costs.
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Table 2: Decomposition of procentual welfare gains from a reduction in variable trade costs τ ij = 3→ (τ ij)′ = 1.

Distribution Parms. ln
(Wi)′
Wi − ln

(τij)′

(τij)
1

σ−1
ln

(Mi)′

Mi
1

σ−1
ln

(m0
ωii∗

)′

m0
ωii∗

1
σ−1

ln
(mσ−1

ωij∗
)′

mσ−1

ωij∗
− 1
σ−1

ln
(λij)′

λij

Pareto 2 - 1.10 - - - -

(-0.00;0.00)*** (1.10;1.10) (-0.22;-0.22)*** (-0.00;0.00)*** (0.00;0.00)*** (-0.88;-0.88)***

Left-Pareto Lognormal 3 0.16 1.10 -0.17 0.15 0.60 -1.51

(0.16;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.58;0.62)*** (-1.53;-1.49)***

Inv. Pareto-Lognormal 3 0.17 1.10 -0.17 0.15 0.58 -1.49

(0.16;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.56;0.60)*** (-1.51;-1.47)***

Lognormal 2 0.17 1.10 -0.17 0.15 0.53 -1.44

(0.17;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.51;0.55)*** (-1.46;-1.42)***

Right-Pareto Lognormal 3 0.18 1.10 -0.18 0.17 0.28 -1.19

(0.18;0.19)** (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.23;0.33)** (-1.24;-1.13)**

Empirical 0 0.19 1.10 -0.18 0.18 0.20 -1.10

4-comp. Lognormal 11 0.19 1.10 -0.18 0.18 0.20 -1.10

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.18;0.22) (-1.13;-1.08)

5-comp. Lognormal 14 0.19 1.10 -0.19 0.18 0.20 -1.10

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.19) (0.17;0.22) (-1.12;-1.07)

2-comp. Lognormal 5 0.19 1.10 -0.17 0.17 0.23 -1.13

(0.19;0.19) (1.10;1.10) (-0.18;-0.17)*** (0.16;0.17)*** (0.22;0.25)*** (-1.15;-1.12)***

3-comp. Lognormal 8 0.19 1.10 -0.18 0.18 0.19 -1.09

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.16;0.22) (-1.12;-1.06)

Lognormal-Pareto 3 0.22 1.10 -0.22 0.22 0.02 -0.90

(0.20;0.21)*** (1.10;1.10) (-0.22;-0.20)*** (0.20;0.22)*** (0.04;0.14)*** (-1.04;-0.93)***

Double-Pareto Lognormal 4 - 1.10 - - - -

(0.20;0.22)*** (1.10;1.10) (-0.20;-0.19)*** (0.19;0.20)*** (0.02;0.09)*** (-0.98;-0.90)***

Inv. Pareto-Lognormal-Pareto 4 - 1.10 - - - -

(0.21;0.22)*** (1.10;1.10) (-0.20;-0.18)* (0.18;0.20)*** (0.01;0.08)*** (-0.97;-0.89)***

Notes: ln
(Wi)′
Wi indicates the log changes in real per-capita income due to an exogenous increase in variable trade costs τij to τ ′ij . This is further

decomposed into the channels through which trade affects welfare: trade costs (τ ij), the number of firms (M i), the probality of successful entry into the
domestic market (m0

ωii∗
), the average productivity of firms exporting from i to j (mσ−1

ωij∗
) and the bilateral trade share (λij).

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped statistics with 999 replications. ∗∗∗, ∗∗, ∗ indicate the
rejection of a signifcant overlap of the parametric bootstrapped statistic with the empirical statistic at 1%, 5% and 10% respectively.
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The reported findings are not the result of a specific parametrization of the model. Figure 4

displays the percentage errors in parametric GFT calculations relative to the empirical benchmark

for different parametrization scenarios. Our findings are robust for different values of the elasticity

of substitution (left upper panel) and fixed entry costs (left bottom panel), as well as for different

starting values for the iceberg trade costs (right upper panel) and a reduction in fixed rather than

variable trade costs (right bottom panel).

7 Conclusion

This paper provides evidence that heterogeneity in the firm-level productivity distribution can be

captured most adequately by Finite Mixture Models. A clear statistical framework differentiates

between the fit of 52 distributions to domestic sales of the population of active Portuguese firms

in 2006. The flexible, semi-parametric nature of FMMs results in a substantial empirical perform-

ance improvement compared to commonly used parametric alternatives in the firm size literature.

FMMs are the only distributions that are not rejected by the data and provide a sufficiently good

approximation of Gains From Trade (GFT). Whereas other parametric distributions significantly

over- or underestimate the empirical (or ‘true’) GFT, FMMs can adequately track the ‘true’ GFT.

The superior performance of FMMs follows from their ability to accurately capture heterogeneity

in the bulk of the distribution, which is overlooked by commonly used parametric alternatives to

FMMs.

FMMs can be relied upon either to capture heterogeneity in productivity or to cluster pro-

ductivity into discrete sub-populations. Our results provide strong evidence in favor of FMMs

from the first perspective. We take no stance on distribution type or the mixing parameter (or

mechanism) that defines the underlying discrete subpopulations. It is clear that the two are closely

interconnected, and therefore not easily identifiable. Further research is necessary to define which

mechanisms result in multiple individual densities defining the overall productivity distribution.

The idea of FMMs also opens many new venues for ongoing research. For instance, the mech-

anisms driving firm-level dynamics in aggregate growth models are determined by the paramet-

ric approximation of the productivity distribution (see, for instance, Luttmer (2007); Arkolakis

(2016)). A correct parametric approximation is then essential to motivate the determinants of a
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firm’s productivity growth. Moreover, the estimation of productivity usually relies on an identical

first-order Markov process for the complete population. Concurrently, however, it is recognized

that productivity dynamics are endogenous to exporting (De Loecker, 2013), importing (Kasahara

and Rodrigue, 2008), innovation (Aw et al., 2011), management practices (Bloom and Reenen,

2011; Caliendo et al., 2020), et cetera. Introducing Finite Mixture Modeling into the estimation

procedures would allow, semi-parametrically, to control for such discrete subpopulations without

the risk of model misspecification. Moreover, the potential identification of these subpopulations

provides the opportunity to discriminate between the many different mechanisms (see, for instance,

Cabral and Mata (2003); Klette and Kortum (2004); Rossi-Hansberg and Wright (2007); Atkeson

and Burstein (2010); Caliendo et al. (2020)) that drive the existence of such subpopulations. Also,

the propagation of firm-level volatility to the aggregate level mainly relies on a Pareto specification

for the right tail of the productivity distribution (Gabaix, 2011; di Giovanni and Levchenko, 2012;

Carvalho and Grassi, 2019). FMMs are sufficiently heavy-tailed to motivate granularity.
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Appendix A Additional Figures and table

A.1 Figures

Figure 1: Density comparison of the SCIE dataset with and without individual companies.
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Figure 2: Empirical probability density function of Portuguese firm productivity in 2006 (upper
panel) with fitted Pareto and (4-component) Lognormal densities. The lower left and right panels
focus in on the left and right tail respectively.
Notes: Productivity is measured as domestic sales (relative to the mean) to the power of 1/(σ − 1) with σ, the

elasticity of substitution between varieties, set to four. Distributions are fitted using maximum likelihood methods

(cf. infra) to the complete dataset.
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2006.
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Figure 4: Percentage errors in parametric GFT calculations relative to the empirical benchmark
for different values of the elasticity of substitution (left upper panel) and different fixed entry costs
(left bottom panel) for a reduction in variable trade costs

(
τ ij = 3→ (τ ij)′ = 1

)
. The right upper

panel displays percentage errors in parametric GFT for different starting values of the iceberg trade
costs

(
τ ij ∈ [1; 3]→ (τ ij)′ = 1

)
. The bottom left panel showcases the error in parametric GFT for

a reduction in fixed exporting costs with different starting values
(
f ij ∈ [1; 3]→ (f ij)′ = 1

)
.

Notes: Full lines represent the parametric population GFT, while shaded areas delineate the 5th and 95th quantile

of the parametric bootstrapped (999 replications) finite sample GFT. The Double-Pareto Lognormal has no finite

population GFT value.

4



Figure 5: Probability density function of the 1- to 5-component Lognormal and its probability-
weighted individual components fitted to Portuguese firm productivity in 2006.
Notes: Productivity is measured as domestic sales (relative to the mean) to the power of 1/(σ − 1) with σ, the

elasticity of substitution between varieties, set to four. Distributions are fitted using maximum likelihood methods

(cf. infra) to the complete dataset. For expositional purposes, the panels are restricted to productivity values between

0 and 2.5. Component ranking is not comparable across distributions.
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Figure 6: Normalized Absolute Deviation between the empirical and 1- to 5-component Lognormal
CDFs over the complete range of domestic sales in Portugal, 2006.

−3.00

−4.67

−7.02

−3.06

1e−04 1e−03 1e−02 1e−01 1e+00

Log of Exporting survival probability ln(1−G(ω
ij∗

))

Trade elasticity (γij)

4−comp. Lognormal Lognormal Lognormal−Pareto

Figure 7: Trade elasticities as a function of the difficulty to reach a market for the Lognormal-
pareto, Lognormal and 4-component Lognormal distribution.

Note: Trade elasticities obtained as γij = 1− σ︸ ︷︷ ︸
intensive margin

− e(σ−1)ωij∗∫∞
ωij∗ e

(σ−1)ωbdG(ωb)︸ ︷︷ ︸
weights

× d lnM ij

dlnτ ij︸ ︷︷ ︸
extensive margin

, where dlnMij

dlnτij
=

eω
ij∗

g(ωij∗)
1−G(ωij∗)

with an elasticity of substitution of 4.
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A.2 Tables

Table 1: Overview of all distributions considered.

Distribution Abbreviation Support Parameters

Change in parameters from

power transformation axb

Pareto P [xmin,∞[ k, xmin kb,
(
xmin
a

) 1
b

Inverse Pareto IP [0, xmax] k, xmax kb,
(
xmax
a

) 1
b

Lognormal LN [0,∞[ µ, SD µ−lna
b

, SD
b

Weibull W [0,∞[ k, s bk,
(
s
a

) 1
b

Exponential Exp [0,∞[ s W
(
b,
(
s
a

) 1
b

)
Burr B [0,∞[ k, c, s k, bc,

(
s
a

) 1
b

Fréchet F [0,∞] k, s bk,
(
s
a

) 1
b

Generalized Gamma GG [0,∞[ k, c, s bk, bc,
(
s
a

) 1
b

Gamma G [0,∞[ k, s GG
(
bk, b,

(
s
a

) 1
b

)
Finite Mixture Model FMM See ind. comp. Ψ See ind. comp.

Piecewise composite PC See ind. comp. θ See ind. comp.

Double-Pareto Lognormal DPLN [0,∞[ k1, µ, SD, k2
k1
b
, bµ+ log(a), SD, k2

b

Left-Pareto Lognormal LPLN [0,∞[ k1, µ, SD
k1
b
, bµ+ log(a), SD

Right-Pareto Lognormal RPLN [0,∞[ µ, SD, k2 bµ+ log(a), SD, k2
b
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Table 2: Overview of the probability and cumulative density functions of single distributions con-
sidered.

Distribution PDF CDF

P
kxkmin
xk+1 1−

(
xmin
x

)k
IP kx−kmax

x−k+1 1−
(
xmax
x

)−k
LN 1

xSD
√

2π
e−(lnx−µ)2/2SD2

Φ
(
lnx−µ
SD

)
W k

s

(
x
s

)k−1
e−(xs )

k

1− e−(xs )
k

Exp 1
se
−x
s 1− e−

x
s

B
kc
s (xs )

c−1

(1+(xs )
c
)
k+1 1− 1

(1+(xs )
c
)
k

F k
s

(
x
s

)−1−k
e−(xs )

−k
e−(xs )

−k

GGa c
skΓ( k

c
)
xk−1e−(xs )

c
1

Γ( k
c

)
γ(kc ,

(
x
s

)c
)

Ga 1
skΓ(k)

xk−1e−
x
s

1
Γ(k)γ(k, xs )

Notes: aΓ(x) stands for the Gamma function, while γ(s, x) stands for
the lower incomplete Gamma function with upper bound x.
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Table 3: Overview of the probability and cumulative density functions of combined distributions considered.

Distribution PDF CDF

FMM
∑I
i=1 πimi(x|θi)

∑I
i=1 πiM(x|θi)

PCa



α1
1+α1+α2

m∗1(x|θ1) if 0 < x ≤ c1

1
1+α1+α2

m∗2(x|θ2) if c1 < x ≤ c2

α2
1+α1+α2

m∗3(x|θ3) if c2 < x <∞



α1
1+α1+α2

M1(x|θ1)
M1(c1|θ1)

if 0 < x ≤ c1

α1
1+α1+α2

+ 1
1+α1+α2

M2(x|θ2)−M2(c1|θ2)
M2(c2|θ2)−M2(c1|θ2)

if c1 < x ≤ c2

1+α1
1+α1+α2

+ α2
1+α1+α2

M3(x|θ3)−M3(c2|θ3)
1−M3(c2|θ3)

if c2 < x <∞

DPLNb

k2k1
k2 + k1

[
x−k2−1ek2µ+

k22SD
2

2 Φ

(
lnx− µ− k2SD2

SD

)
+

xk1−1e−k1µ+
k21SD

2

2 Φc
(
lnx− µ+ k1SD

2

SD

)] Φ

(
lnx− µ
SD

)
− 1

k2 + k1

[
k1x
−k2ek2µ+

k22SD
2

2 Φ

(
lnx− µ− k2SD2

SD

)
−

k2x
k1e−k1µ+

k21SD
2

2 Φc
(
lnx− µ+ k1SD

2

SD

)]

LPLNb k1x
k1−1e−k1µ+

k21SD
2

2 Φc
(
lnx−µ+k1SD2

SD

)
Φ
(
lnx−µ
SD

)
− xk1e−k1µ+

k21SD
2

2 Φc
(
lnx−µ+k1SD2

SD

)

RPLNb k2x
−k2−1ek2µ+

k22SD
2

2 Φ
(
lnx−µ−k2SD2

SD

)
Φ
(
lnx−µ
SD

)
− x−k2ek2µ+

k22SD
2

2 Φ
(
lnx−µ−k2SD2

SD

)

Notes: a ∀i ∈ I : m∗i (x) =
mi(x)∫ ci

ci−1
mi(x)dx

, b Φ and Φc stand for the standard normal and complementary standard normal cdfs.
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Table 4: Expression of the y-bounded rth moment (µry) for the single distributions considered.

Distribution µry Additional parameter restrictionsa

P − (y)r−k
kωkmin
r−k k > r

IP kω−kmax
(ωmax)r+k−(y)r+k

r+k -

LN e
r(rSD2+2µ)

2

[
1− Φ

(
lny−(rSD2+µ)

SD

)]
-

Wc sσs−1Γ
(
σs−1
k + 1,

(y
s

)k)
-

Expc sσs−1Γ
(
σs + 1, ys

)
-

Bb srk

[
B
(
r
c + 1, k − r

c

)
−B

(
( ys )

c

1+( ys )
c ; rc + 1, k − r

c

)]
c > r, kc > r

Fc sσs−1
[
1− Γ

(
1− σs−1

k ,
(y
s

)−k)]
k > r

GGc sσs−1

Γ( k
c

)
Γ
(
σs−1+k

c ,
(y
s

)c)
-

Gc sσs−1

Γ(k) Γ
(
σs − 1 + k, ys

)
-

Notes: a Additional parameter restrictions represent parameter restrictions needed to keep the statistic finite. b B(a, b) stands for the
beta function, while B(x, a, b) stands for the lower incomplete beta function with upper bound x. c Γ(x) stands for the Gamma function,
while Γ(s, x) stands for the upper incomplete Gamma function with lower bound x.
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Table 5: Expression of the y-bounded rth moment (µry) for the combined considered.

Distribution µry Additional parameter restrictionsa

FMM
∑I
i=1 πi(µi)

r
y See ind. comp.

PC



α1
1+α1+α2

(µ1)
r
y−(µ1)

r
c1

M1(c1)
+ 1

1+α1+α2

(µ2)
r
c1
−(µ2)

r
c2

M2(c2)−M2(c1)
+ α2

1+α1+α2

(µ3)
r
y

1−M3(c2)
if 0 < y ≤ c2

1
1+α1+α2

(µ2)
r
y−(µ2)

r
c2

M2(c2)−M2(c1)
+ α2

1+α1+α2

(µ3)
r
c2

1−M3(c2)
if c1 < y ≤ c2

α2
1+α1+α2

(µ3)
r
y

1−M3(c2)
if c2 < y <∞

See ind. comp.

DPLN

− k2k1
k2 + k1

ek2µ+
k22SD

2

2
yσs−k2−1

σs − k2 − 1
Φ

(
lny − µ− k2SD2

SD

)
− k2k1
k2 + k1

1

r − k2
e
r2SD2+2µr

2 Φc
(
lny − rSD2 − µ

SD

)
− k2k1
k2 + k1

e−k1µ+
k21SD

2

2
yσs+k1−1

σs + k1 − 1
Φc
(
lny − µ+ k1SD

2

SD

)
+

k2k1
k2 + k1

1

r + k1
e
r2SD2+2µr

2 Φc
(
lny − rSD2 − µ

SD

)
k2 > r

LPLN

− k1e−k1µ+
k21SD

2

2
yσs+k1−1

σs + k1 − 1
Φc
(
lny − µ+ k1SD

2

SD

)
+

k1
r + k1

e
r2SD2+2µr

2 Φc
(
lny − rSD2 + µ

SD

) -

RPLN

− k2ek2µ+
k22SD

2

2
yσs−k2−1

σs − k2 − 1
Φ

(
lny − µ− k2SD2

SD

)
− k2
r − k2

e
r2SD2+2µr

2 Φc
(
lny − rSD2 + µ

SD

) k2 > r

Notes: a Additional parameter restrictions represent parameter restrictions needed to keep the statistic finite.
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Table 6: Coverage ratio of SCIE vs OECD SDBS database.

Number of Enterprises Total Employment Turnover

NACE Rev.2 1-9 10-19 20-49 50-249 > 250 Total 1-9 10-19 20-49 50-249 > 250 Total 1-9 10-19 20-49 50-249 > 250 Total

13 100 100 100
14 100 100 100 100 100 100 100 100 100
15 100 100 100 100 100 100 100 100 100 100 100 100 100 100
16 100 100 100 100 100
17 100 100 100 100 100 100 100 100 100 100 100 100
18 100 100 100 100 100 100 100 100 100 100 100 100
19 100 100 100 100 100 100 100 100 100 100 100 100
20 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
21 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
22 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
23 100 100
24 100 100 100 100 100 100 100 100 100 100
25 100 100 100 100 100 100 100 100 100 100 100 100
26 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
27 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
28 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
29 100 100 100 100 100 100 100 100 100 100 100 100 100 100
30 100 100 100 100 100 100
31 100 100 100 100 100 100 100 100 100 100 100 100 100 100
32 100 100 100 100 100 100 100 100 100 100 100 100 100 100
33 100 100 100 100 100 100 100 100 100 100 100 100
34 100 100 100 100 100 100 100 100 100 100 100 100
35 100 100 100 100 100 100 100 100 100 100 100 100
36 100 100 100 100 100 100 100 100 100 100 100 100 100 100
37 100 100 100 100 100 100 100 100 100
40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
41 100 100 100 100 100 100 100 100 100 100 100 100 100 100
45 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
50 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
51 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
52 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
55 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
61 100 100 100 100 100 100 100 100 100 100 100 100
62 100 100 100 100 100 100 100 100 100 100 100 100
63 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
64 100 100 100 100 100 100 100 100 100 100 100 100 100 100
70 100 100 100 100 100 100 100 100 100 100 100 100 100 100
71 100 100 100 100 100 100 100 100 100 100
72 100 100 100 100 100 100 100 100 100 100 100 100 100 100
73 100 100 100 100 100 100 100
74 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Notes: Each cell corresponds to the ratio of our dataset compared to the data from the OECD structural SDBS database for the year 2006. Size classes are based

on total employment. Empty cells and absent industries are due to missing information from SBDS, even though the data is available in our SCIE database.
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Table 7: Distribution fits to Portuguese domestic sales in 2006.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b T 1
a S1

b Loglike RAIC RBIC

5-comp. Lognormal 14 0.18 0.11 3.08 2.37 12,776 1 3+++

(0.10;0.25) (0.08;0.32) (2.03;9.73) (0.82;26.24)

4-comp. Lognormal 11 0.19 0.11 2.78 0.13 12,770 2 2

(0.09;0.25) (0.08;0.32) (2.07;9.23) (0.83;24.67)

5-comp. Burr 19 0.19 0.12 - - 12,767 3 7+++

(0.10;0.25) (0.08;0.32) (-;-) (-;-)

4-comp. Burr 15 0.24 0.14 - - 12,754 4 6+++

(0.10;0.25)* (0.08;0.32) (-;-) (-;-)

3-comp. Burr 11 0.25 0.17 - - 12,748 6 4+++

(0.09;0.25)* (0.08;0.30) (-;-) (-;-)

2-comp. Burr 7 0.20 0.20 - - 12,745 5 1

(0.09;0.25) (0.08;0.32) (-;-) (-;-)

5-comp. Weibull 14 0.25 0.14 6.96 11.95 12,731 7 8+++

(0.10;0.25)** (0.08;0.31) (1.29;5.00)*** (0.59;13.45)*

3-comp. Lognormal 8 0.29 0.34 4.39 9.91 12,723 8 5+++

(0.10;0.24)** (0.09;0.32)** (2.34;11.34) (0.93;30.68)

5-comp. Gamma 14 0.26 0.16 7.27 0.09 12,639 9 9+++

(0.10;0.26)** (0.09;0.33) (1.29;5.11)*** (0.44;14.23)

Inv. Pareto-Burr 4 0.51 0.61 - - 12,561 10 10+++

(0.09;0.24)*** (0.08;0.33)*** (-;-) (-;-)

Inv. Pareto-Burr-Pareto 5 0.51 0.61 - - 12,561 11 11+++

(0.09;0.25)*** (0.08;0.33)*** (-;-) (-;-)

5-comp. Exponential 9 0.32 0.23 7.96 0.15 12,548 12 12+++
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(0.09;0.26)*** (0.09;0.31) (1.31;4.78)*** (0.40;12.83)

4-comp. Weibull 11 0.31 0.25 14.75 27.04 12,543 13 13+++

(0.09;0.25)*** (0.08;0.31) (0.87;3.44)*** (0.29;8.78)***

Burr-Pareto 4 0.73 0.95 - - 12,451 15 15+++

(0.09;0.25)*** (0.08;0.33)*** (-;-) (-;-)

Burr 3 0.73 0.95 - - 12,451 14 14+++

(0.10;0.24)*** (0.08;0.31)*** (-;-) (-;-)

Double-Pareto Lognormal 4 0.66 0.80 - - 12,429 16 16+++

(0.09;0.25)*** (0.08;0.33)*** (-;-) (-;-)

2-comp. Lognormal 5 0.53 0.71 8.70 10.15 12,401 17 17+++

(0.10;0.24)*** (0.09;0.32)*** (1.32;5.87)** (0.54;16.11)

Inv. Pareto-Lognormal-Pareto 4 0.81 1.01 - - 12,231 18 18+++

(0.09;0.26)*** (0.08;0.34)*** (-;-) (-;-)

4-comp. Gamma 11 0.40 0.63 11.95 0.26 12,173 19 19+++

(0.10;0.25)*** (0.08;0.32)*** (1.00;3.92)*** (0.26;10.38)

Inv. Pareto-Fréchet-Pareto 4 1.11 1.48 - - 11,953 20 20+++

(0.09;0.25)*** (0.08;0.33)*** (-;-) (-;-)

3-comp. Weibull 8 0.69 0.92 20.31 39.45 11,855 21 21+++

(0.10;0.25)*** (0.09;0.31)*** (0.73;2.60)*** (0.23;6.78)***

4-comp. Exponential 7 0.57 0.89 13.91 0.36 11,801 22 22+++

(0.10;0.25)*** (0.09;0.32)*** (0.95;3.61)*** (0.34;9.44)

Inv. Pareto-Weibull-Pareto 4 1.60 2.00 - - 11,338 24 24+++

(0.09;0.25)*** (0.08;0.32)*** (-;-) (-;-)

Weibull-Pareto 3 1.60 2.00 - - 11,338 23 23+++

(0.09;0.25)*** (0.08;0.32)*** (-;-) (-;-)

Inv. Pareto-Gamma-Pareto 4 1.70 2.17 - - 11,249 26 26+++

(0.10;0.26)*** (0.08;0.35)*** (-;-) (-;-)

Gamma-Pareto 3 1.70 2.17 - - 11,249 25 25+++
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(0.09;0.25)*** (0.08;0.32)*** (-;-) (-;-)

Inv. Pareto-Exponential-Pareto 3 1.97 2.71 - - 11,044 27 27+++

(0.10;0.25)*** (0.09;0.33)*** (-;-) (-;-)

Exponential-Pareto 2 2.00 2.83 - - 11,012 28 28+++

(0.09;0.25)*** (0.08;0.32)*** (-;-) (-;-)

3-comp. Gamma 8 1.00 1.56 19.47 0.62 10,288 29 29+++

(0.10;0.25)*** (0.09;0.32)*** (0.73;2.75)*** (0.30;7.18)

Inv. Pareto-Lognormal 3 3.02 4.26 45.72 127.97 9,198 30 30+++

(0.09;0.24)*** (0.08;0.31)*** (0.43;1.67)*** (0.16;4.36)***

Lognormal-Pareto 3 2.56 3.78 562.07 1683.18 8,721 31 31+++

(0.09;0.25)*** (0.08;0.32)*** (169.39;451.06)*** (371.67;1342.23)***

3-comp. Exponential 5 1.64 2.60 22.73 0.87 8,387 32 32+++

(0.09;0.25)*** (0.08;0.32)*** (0.67;2.36)*** (0.21;6.27)

Left-Pareto Lognormal 3 3.23 4.91 46.00 127.70 8,059 33 33+++

(0.10;0.25)*** (0.09;0.32)*** (0.41;1.58)*** (0.18;4.05)***

Right-Pareto Lognormal 3 2.82 4.38 19.27 49.88 8,028 34 34+++

(0.09;0.25)*** (0.08;0.32)*** (3.10;11.90)** (1.23;32.23)**

Lognormal 2 2.93 5.03 41.38 113.04 7,372 35 35+++

(0.10;0.25)*** (0.08;0.33)*** (0.47;1.84)*** (0.17;4.76)***

2-comp. Weibull 5 2.10 3.19 35.20 72.85 6,442 36 36+++

(0.09;0.24)*** (0.08;0.31)*** (0.42;1.50)*** (0.16;3.80)***

2-comp. Fréchet 5 6.92 10.64 - - -3,041 37 37+++

(0.09;0.25)*** (0.08;0.32)*** (-;-) (-;-)

5-comp. Fréchet 14 6.96 10.63 - - -3,045 40 40+++

(0.10;0.25)*** (0.09;0.31)*** (-;-) (-;-)

3-comp. Fréchet 8 6.96 10.63 - - -3,046 38 38+++

(0.09;0.25)*** (0.08;0.32)*** (-;-) (-;-)

4-comp. Fréchet 11 6.98 10.63 - - -3,047 39 39+++

15



(0.10;0.25)*** (0.09;0.32)*** (-;-) (-;-)

2-comp. Gamma 5 4.00 5.93 31.79 2.24 -3,381 41 41+++

(0.09;0.25)*** (0.08;0.32)*** (0.45;1.67)*** (0.14;4.45)

2-comp. Exponential 3 7.06 11.51 37.63 3.23 -18,112 42 42+++

(0.10;0.25)*** (0.08;0.33)*** (0.38;1.40)*** (0.14;3.52)*

Inv. Pareto-Weibull 3 9.18 16.52 54.06 123.38 -29,711 43 44+++

(0.10;0.25)*** (0.08;0.31)*** (0.26;0.92)*** (0.11;2.22)***

Weibull 2 9.18 16.51 54.06 123.40 -29,713 44 43+++

(0.09;0.25)*** (0.09;0.32)*** (0.25;0.90)*** (0.15;2.20)***

Fréchet 2 8.91 16.72 - - -32,908 45 45+++

(0.10;0.26)*** (0.08;0.33)*** (-;-) (-;-)

Fréchet-Pareto 3 8.91 16.72 - - -32,908 46 46.5+++

(0.10;0.25)*** (0.08;0.31)*** (-;-) (-;-)

Inv. Pareto-Fréchet 3 8.91 16.72 - - -32,908 46 46.5+++

(0.09;0.25)*** (0.08;0.33)*** (-;-) (-;-)

Inv. Pareto-Gamma 3 20.93 32.98 50.26 9.56 -104,785 48 48+++

(0.10;0.25)*** (0.08;0.33)*** (0.22;0.76)*** (0.13;1.81)***

Gamma 2 20.98 33.03 50.29 9.58 -104,878 49 49+++

(0.10;0.25)*** (0.08;0.32)*** (0.22;0.76)*** (0.11;1.71)***

Exponential 1 44.64 79.71 60.73 16.76 -299,935 50 50+++

(0.10;0.25)*** (0.09;0.33)*** (0.15;0.49)*** (0.11;1.08)***

Inv. Pareto-Exponential 2 44.64 79.71 60.73 16.76 -299,935 51 51+++

(0.09;0.24)*** (0.08;0.32)*** (0.15;0.51)*** (0.11;1.12)***

Pareto 2 48.34 68.18 - - -436,227 52 52+++

(0.09;0.25)*** (0.08;0.33)*** (-;-) (-;-)
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Notes: All distributions fitted using Maximum Likelihood.

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic with 999 replications. ∗∗∗, ∗∗, ∗ indicate

significance of this test at 1%, 5% and 10% respectively.

+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms of BIC (∆BIC) providing strong evidence

in favour of the first-ranked distribution (∆BIC > 10), moderate evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.

a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.
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Table 8: Coefficients for selected distribution fits to Portuguese domestic sales in 2006.

Distribution Parms. Priors Coefficients

Double-Pareto Lognormal 4 π1=1.00 k1=0.99, µ=-2.08, SD=0.94, k2=0.92

Inv. Pareto-Lognormal 3 π1=1.00 k1=1.03, µ2=-1.95, SD2=1.68

Inv. Pareto-Lognormal-Pareto 4 π1=1.00 k1=0.96, µ2=-2.04, SD2=1.44, k3=0.89

Left-Pareto Lognormal 3 π1=1.00 k1=1.44, µ=-1.31, SD=1.60

Lognormal 2 π1=1.00 µ=-2.00, SD=1.75

2-comp. Lognormal 5 π1=0.46
π2=0.54

µ=-1.91, SD=2.24
µ=-2.08, SD=1.19

3-comp. Lognormal 8 π1=0.54
π2=0.27
π3=0.18

µ=-1.84, SD=1.69
µ=-2.23, SD=0.96
µ=-2.14, SD=2.60

4-comp. Lognormal 11 π1=0.24
π2=0.31
π3=0.35
π4=0.10

µ=-2.14, SD=2.51
µ=-2.62, SD=1.21
µ=-1.35, SD=1.48
µ=-2.06, SD=0.68

5-comp. Lognormal 14 π1=0.23
π2=0.10
π3=0.21
π4=0.23
π5=0.23

µ=-2.14, SD=2.53
µ=-2.02, SD=0.66
µ=-2.68, SD=1.10
µ=-1.45, SD=1.43
µ=-1.79, SD=1.70

Lognormal-Pareto 3 π1=1.00 µ1=-2.06, SD1=1.68, k2=1.02

Pareto 2 π1=1.00 xmin=0.00, k=0.09

Right-Pareto Lognormal 3 π1=1.00 µ=-2.72, SD=1.59, k2=1.39

Notes: All distributions fitted using Maximum Likelihood.

18



Table 9: Selected distribution fits to the tails of Portuguese domestic sales in 2006.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b Loglike RAIC RBIC

Left tail (N=25,588, 8.53% of the data)

5-comp. Trunc. Lognormal 14 0.63 0.04 108,196.19*** 5 6+++

(0.32;0.85) (0.02;0.10)

4-comp. Trunc. Lognormal 11 0.61 0.04 108,195.05*** 4 5+++

(0.33;0.85) (0.02;0.09)

3-comp. Trunc. Lognormal 8 0.58 0.04 108,194.44*** 1 4+++

(0.33;0.86) (0.02;0.10)

2-comp. Trunc. Lognormal 5 0.77 0.06 108,189.93*** 3 3+++

(0.32;0.84)* (0.02;0.09)

Trunc. Lognormal 2 1.02 0.10 108,186.99*** 2 1

(0.32;0.85)** (0.02;0.09)**

Inv. Pareto 2 0.80 0.10 108,183.90 6 2++

(0.33;0.84)* (0.02;0.09)**

Right tail (N=18,217, 6.07% of the data)

5-comp. Trunc. Lognormal 14 0.62 0.03 -47,896.59*** 5 6+++

(0.39;1.00) (0.02;0.07)

Trunc. Lognormal 2 0.70 0.04 -47,897.86*** 1 1

(0.38;0.97) (0.02;0.08)

2-comp. Trunc. Lognormal 5 0.71 0.04 -47,897.99*** 2 3+++

(0.38;1.01) (0.02;0.08)

3-comp. Trunc. Lognormal 8 0.68 0.04 -47,898.60*** 3 4+++

(0.38;0.99) (0.02;0.08)

4-comp. Trunc. Lognormal 11 0.68 0.04 -47,898.62*** 4 5+++

(0.39;1.00) (0.02;0.08)

Pareto 2 0.86 0.08 -47,910.44 6 2+++

(0.38;0.99) (0.02;0.08)*

Notes: All distributions fitted using Maximum Likelihood.
Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic
with 999 replications. ∗∗∗, ∗∗, ∗ indicate significance of this test at 1%, 5% and 10% respectively.
Similarly, ∗∗∗, ∗∗, ∗ indicate significance at 1%, 5% and 10% respectively for the likelihood ratio test between
(Inverse) Pareto and (mixtures of) the Lognormal distribution.
+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms
of BIC (∆BIC) providing strong evidence in favor of the first-ranked distribution (∆BIC > 10), moderate
evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.

a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.
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Table 10: Distribution fits to domestic sales of the Portuguese manufacturing sector in 2006.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b Loglike RAIC RBIC

5-comp. Burr 19 0.24 0.02 -2,095 7 10+++

(0.25;0.66) (0.03;0.12)

5-comp. Lognormal 14 0.28 0.03 -2,095 3 5+++

(0.25;0.67) (0.03;0.12)

4-comp. Burr 15 0.24 0.02 -2,096 5 6+++

(0.25;0.67) (0.03;0.12)

3-comp. Burr 11 0.23 0.03 -2,099 4 3+++

(0.25;0.67) (0.03;0.12)

2-comp. Burr 7 0.22 0.02 -2,099 1 1

(0.25;0.66) (0.03;0.12)

3-comp. Lognormal 8 0.28 0.02 -2,101 2 2+++

(0.25;0.69) (0.03;0.12)

4-comp. Lognormal 11 0.27 0.02 -2,101 6 4+++

(0.25;0.67) (0.03;0.12)

5-comp. Weibull 14 0.34 0.03 -2,104 8 7+++

(0.26;0.65) (0.03;0.11)

5-comp. Gamma 14 0.31 0.04 -2,114 9 8+++

(0.26;0.66) (0.03;0.12)

4-comp. Weibull 11 0.40 0.04 -2,131 10 9+++

(0.26;0.65) (0.03;0.11)

5-comp. Exponential 9 1.29 0.15 -2,171 11 13+++

(0.25;0.66)*** (0.03;0.12)***

4-comp. Gamma 11 0.50 0.09 -2,178 12 15+++

(0.26;0.65) (0.03;0.12)

Inv. Pareto-Fréchet-Pareto 4 0.65 0.09 -2,187 13 11+++

(0.25;0.65)* (0.03;0.12)

Inv. Pareto-Burr 4 0.88 0.13 -2,197 14 12+++

(0.26;0.65)*** (0.03;0.12)**

Inv. Pareto-Burr-Pareto 5 0.88 0.13 -2,197 15 14+++

(0.25;0.69)*** (0.03;0.12)**

3-comp. Weibull 8 0.83 0.14 -2,222 16 17+++

(0.25;0.66)*** (0.03;0.11)**

2-comp. Lognormal 5 0.73 0.11 -2,232 17 16+++

(0.26;0.67)** (0.03;0.12)*

20



Double-Pareto Lognormal 4 1.08 0.17 -2,245 18 18+++

(0.26;0.66)*** (0.03;0.12)***

4-comp. Exponential 7 1.18 0.16 -2,251 19 20+++

(0.26;0.66)*** (0.03;0.12)***

Inv. Pareto-Lognormal-Pareto 4 1.27 0.18 -2,263 20 19+++

(0.25;0.66)*** (0.03;0.11)***

Burr-Pareto 4 1.18 0.25 -2,284 22 22+++

(0.26;0.67)*** (0.03;0.12)***

Burr 3 1.18 0.25 -2,284 21 21+++

(0.26;0.67)*** (0.03;0.12)***

Inv. Pareto-Gamma-Pareto 4 1.65 0.28 -2,346 23 24+++

(0.25;0.65)*** (0.03;0.12)***

Inv. Pareto-Weibull-Pareto 4 1.62 0.28 -2,348 24 25+++

(0.25;0.68)*** (0.03;0.12)***

Gamma-Pareto 3 1.58 0.27 -2,355 26 26+++

(0.25;0.68)*** (0.03;0.12)***

Weibull-Pareto 3 1.58 0.27 -2,355 27 27+++

(0.27;0.67)*** (0.03;0.11)***

Exponential-Pareto 2 1.57 0.27 -2,355 25 23+++

(0.26;0.68)*** (0.03;0.12)***

Inv. Pareto-Exponential-Pareto 3 1.57 0.27 -2,355 28 28+++

(0.26;0.67)*** (0.03;0.12)***

3-comp. Gamma 8 1.01 0.20 -2,408 29 29+++

(0.26;0.68)*** (0.03;0.12)***

3-comp. Exponential 5 1.44 0.26 -2,608 30 30+++

(0.25;0.65)*** (0.03;0.12)***

Inv. Pareto-Lognormal 3 4.18 0.81 -2,875 31 31+++

(0.26;0.65)*** (0.03;0.12)***

2-comp. Weibull 5 2.19 0.43 -2,918 32 32+++

(0.25;0.66)*** (0.03;0.12)***

Lognormal-Pareto 3 3.25 0.64 -3,051 33 33+++

(0.25;0.67)*** (0.03;0.12)***

Left-Pareto Lognormal 3 4.39 0.89 -3,103 34 34+++

(0.25;0.65)*** (0.03;0.11)***

Right-Pareto Lognormal 3 3.51 0.73 -3,143 35 35+++

(0.26;0.66)*** (0.03;0.12)***

Lognormal 2 3.96 0.88 -3,250 36 36+++

(0.25;0.65)*** (0.03;0.11)***
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2-comp. Gamma 5 3.35 0.71 -4,108 37 37+++

(0.25;0.65)*** (0.03;0.12)***

5-comp. Fréchet 14 8.11 1.79 -4,863 38 40+++

(0.26;0.67)*** (0.03;0.12)***

4-comp. Fréchet 11 8.35 1.80 -4,870 39 39+++

(0.25;0.66)*** (0.03;0.12)***

3-comp. Fréchet 8 8.59 1.82 -4,881 40 38+++

(0.26;0.67)*** (0.03;0.12)***

2-comp. Fréchet 5 9.55 1.92 -4,955 41 41+++

(0.25;0.67)*** (0.03;0.12)***

2-comp. Exponential 3 5.75 1.20 -5,550 42 42+++

(0.25;0.67)*** (0.03;0.12)***

Inv. Pareto-Weibull 3 9.91 2.42 -8,321 44 44+++

(0.26;0.65)*** (0.03;0.12)***

Weibull 2 9.91 2.42 -8,321 43 43+++

(0.26;0.67)*** (0.03;0.11)***

Inv. Pareto-Fréchet 3 10.04 2.61 -9,885 46 46+++

(0.26;0.68)*** (0.03;0.12)***

Fréchet-Pareto 3 10.04 2.61 -9,885 47 47+++

(0.25;0.69)*** (0.03;0.13)***

Fréchet 2 10.04 2.61 -9,885 45 45+++

(0.25;0.65)*** (0.03;0.11)***

Inv. Pareto-Gamma 3 20.68 4.43 -17,309 48 48+++

(0.26;0.67)*** (0.03;0.11)***

Gamma 2 20.72 4.44 -17,318 49 49+++

(0.25;0.67)*** (0.03;0.12)***

Exponential 1 43.48 10.42 -41,128 50 50+++

(0.27;0.66)*** (0.03;0.12)***

Inv. Pareto-Exponential 2 43.48 10.42 -41,128 51 51+++

(0.26;0.65)*** (0.03;0.11)***

Pareto 2 49.14 9.43 -66,043 52 52+++

(0.26;0.65)*** (0.03;0.11)***

Notes: All distributions fitted using Maximum Likelihood.

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic

with 999 replications. ∗∗∗, ∗∗, ∗ indicate significance of this test at 1%, 5% and 10% respectively.

+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms

of BIC (∆BIC) providing strong evidence in favour of the first-ranked distribution (∆BIC > 10), moderate

evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.

a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.
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Table 11: Distribution fits to Portuguese domestic sales leaving out the first and last 1,000 obser-
vations in 2006.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b Loglike RAIC RBIC

4-comp. Lognormal 11 0.18 0.18 23,100 1 1

(0.09;0.24) (0.09;0.32)

5-comp. Lognormal 14 0.21 0.20 23,093 2 2+++

(0.09;0.24) (0.08;0.30)

3-comp. Lognormal 8 0.25 0.28 22,844 3 3+++

(0.10;0.25)* (0.09;0.31)*

5-comp. Weibull 14 0.33 0.27 22,764 4 4+++

(0.09;0.25)*** (0.08;0.32)

5-comp. Gamma 14 0.36 0.29 22,758 5 5+++

(0.09;0.24)*** (0.08;0.31)*

4-comp. Gamma 11 0.40 0.30 22,724 6 7+++

(0.09;0.24)*** (0.08;0.31)*

2-comp. Lognormal 5 0.29 0.26 22,695 7 6+++

(0.10;0.25)** (0.09;0.31)

4-comp. Weibull 11 0.40 0.29 22,691 8 8+++

(0.10;0.25)*** (0.08;0.31)*

4-comp. Exponential 7 0.60 0.34 22,544 9 9+++

(0.10;0.25)*** (0.08;0.33)**

5-comp. Exponential 9 0.59 0.36 22,541 10 10+++

(0.09;0.25)*** (0.08;0.32)**

3-comp. Burr 11 0.30 0.38 22,477 11 11+++

(0.09;0.26)*** (0.08;0.32)**

3-comp. Weibull 8 0.40 0.66 22,247 12 12+++

(0.09;0.24)*** (0.08;0.31)***

5-comp. Fréchet 14 0.67 0.56 22,240 13 13+++

(0.09;0.25)*** (0.08;0.32)***

3-comp. Gamma 8 0.56 0.88 22,132 14 14+++

(0.10;0.25)*** (0.09;0.32)***

4-comp. Fréchet 11 0.68 0.66 22,056 15 16+++

(0.09;0.26)*** (0.08;0.32)***

3-comp. Exponential 5 0.64 1.00 22,025 16 15+++

(0.10;0.25)*** (0.08;0.33)***

3-comp. Fréchet 8 0.67 0.65 21,911 17 17+++
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(0.09;0.25)*** (0.09;0.33)***

2-comp. Burr 7 0.80 0.76 21,614 22 22+++

(0.09;0.25)*** (0.08;0.30)***

Inv. Pareto-Burr-Pareto 5 0.80 0.76 21,614 21 21+++

(0.09;0.24)*** (0.08;0.30)***

Inv. Pareto-Burr 4 0.80 0.76 21,614 19 19+++

(0.09;0.25)*** (0.08;0.32)***

Burr 3 0.80 0.76 21,614 18 18+++

(0.10;0.25)*** (0.08;0.32)***

Burr-Pareto 4 0.80 0.76 21,614 20 20+++

(0.09;0.24)*** (0.08;0.31)***

5-comp. Burr 19 0.80 0.76 21,614 23 24+++

(0.09;0.25)*** (0.08;0.31)***

Double-Pareto Lognormal 4 1.04 1.36 21,592 24 23+++

(0.10;0.25)*** (0.09;0.33)***

Inv. Pareto-Lognormal-Pareto 4 1.18 1.51 21,179 25 25+++

(0.10;0.25)*** (0.09;0.33)***

Inv. Pareto-Lognormal 3 2.48 3.35 20,614 26 26+++

(0.10;0.25)*** (0.09;0.33)***

Right-Pareto Lognormal 3 2.02 3.25 20,585 27 27+++

(0.10;0.25)*** (0.08;0.33)***

Lognormal-Pareto 3 1.85 3.01 20,494 28 28+++

(0.10;0.25)*** (0.09;0.32)***

Left-Pareto Lognormal 3 2.49 3.70 20,423 29 29+++

(0.09;0.25)*** (0.08;0.33)***

Lognormal 2 2.35 3.68 20,407 30 30+++

(0.10;0.25)*** (0.09;0.33)***

Inv. Pareto-Fréchet-Pareto 4 1.46 2.06 20,193 31 31+++

(0.10;0.25)*** (0.08;0.32)***

Inv. Pareto-Weibull-Pareto 4 1.95 2.55 19,520 33 33+++

(0.10;0.25)*** (0.08;0.32)***

Weibull-Pareto 3 1.95 2.55 19,520 32 32+++

(0.09;0.25)*** (0.08;0.33)***

Inv. Pareto-Gamma-Pareto 4 2.06 2.75 19,441 35 35+++

(0.10;0.25)*** (0.09;0.32)***

Gamma-Pareto 3 2.06 2.75 19,441 34 34+++

(0.09;0.25)*** (0.09;0.34)***

2-comp. Weibull 5 1.31 2.24 19,404 36 38+++
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(0.09;0.25)*** (0.08;0.32)***

Inv. Pareto-Exponential-Pareto 3 2.20 3.02 19,394 38 37+++

(0.09;0.24)*** (0.08;0.31)***

Exponential-Pareto 2 2.20 3.02 19,394 37 36+++

(0.09;0.24)*** (0.08;0.30)***

2-comp. Fréchet 5 1.49 2.25 19,272 39 39+++

(0.10;0.25)*** (0.08;0.32)***

2-comp. Gamma 5 2.30 3.50 16,675 40 40+++

(0.09;0.25)*** (0.08;0.32)***

2-comp. Exponential 3 3.73 5.90 13,268 41 41+++

(0.10;0.26)*** (0.08;0.33)***

Fréchet 2 7.68 12.96 -6,681 42 42+++

(0.09;0.26)*** (0.08;0.33)***

Fréchet-Pareto 3 7.68 12.96 -6,681 44 43.5+++

(0.10;0.25)*** (0.08;0.32)***

Inv. Pareto-Fréchet 3 7.68 12.96 -6,681 44 43.5+++

(0.10;0.25)*** (0.09;0.33)***

Inv. Pareto-Weibull 3 8.40 14.21 -8,737 46 46+++

(0.10;0.26)*** (0.09;0.33)***

Weibull 2 8.40 14.21 -8,738 45 45+++

(0.10;0.24)*** (0.09;0.31)***

Inv. Pareto-Gamma 3 15.94 24.26 -43,526 47 47+++

(0.09;0.26)*** (0.08;0.34)***

Gamma 2 15.94 24.27 -43,533 48 48+++

(0.09;0.24)*** (0.08;0.30)***

Exponential 1 32.58 56.49 -139,654 49 49+++

(0.10;0.25)*** (0.08;0.32)***

Inv. Pareto-Exponential 2 32.58 56.49 -139,654 50 50+++

(0.10;0.25)*** (0.09;0.33)***

Pareto 2 37.07 55.02 -214,535 51 51+++

(0.09;0.25)*** (0.08;0.32)***

Notes: All distributions fitted using Maximum Likelihood.

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic

with 999 replications. ∗∗∗, ∗∗, ∗ indicate significance of this test at 1%, 5% and 10% respectively.

+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms

of BIC (∆BIC) providing strong evidence in favour of the first-ranked distribution (∆BIC > 10), moderate

evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.

a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.
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Table 12: Out-of-sample and Cross-validation checks for selected distribution fits to Portuguese
domestic sales in 2006.

Distribution Parms. Out-of-samplea 10-fold CVb MCCVc

5-comp. Lognormal 14 16867 1276 6364

4-comp. Lognormal 11 16865 1275 6359

3-comp. Lognormal 8 16808 1264 6313

Double-Pareto Lognormal 4 16542 1243 6204

2-comp. Lognormal 5 16469 1240 6190

Inv. Pareto-Lognormal-Pareto 4 16342 1223 6104

Inv. Pareto-Lognormal 3 13259 919 4575

Lognormal-Pareto 3 12660 872 4350

Left-Pareto Lognormal 3 12089 805 4006

Right-Pareto Lognormal 3 11928 802 4001

Lognormal 2 11305 737 3669

Pareto 2 -43623 -218089

Notes: All distributions fitted using Maximum Likelihood.
a The out-of-sample test evaluates the distribution fit to Portuguese domestic sales in 2006 by means of
log-liklihood for Portuguese domestic sales in 2007.
b The 10-fold CV displayes the average log-likelihood of the parameters obtained from the respective training
samples (9 folds) evaluated on the test sample (remaining 1 fold). b The Monte Carlo Cross-Validatin
displayes the average log-likelihood of the parameters obtained from the training samples (random sample
of half of the original sample) evaluated on the test sample (remaining half of the original sample), repeated
20 times.
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Table 13: Distribution fits to the U.S. Census 2000 city size distribution.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b Loglike RAIC RBIC

5-comp. Burr 19 0.22 0.02 -6,004 3 9+++

(0.33;0.87) (0.02;0.09)

3-comp. Burr 11 0.25 0.02 -6,006 1 2++

(0.33;0.85) (0.02;0.10)

4-comp. Burr 15 0.32 0.02 -6,008 2 5+++

(0.33;0.83) (0.02;0.09)

5-comp. Lognormal 14 0.58 0.05 -6,016 6 6+++

(0.32;0.87) (0.02;0.10)

4-comp. Lognormal 11 0.60 0.05 -6,016 5 4+++

(0.32;0.82) (0.02;0.09)

3-comp. Lognormal 8 0.62 0.05 -6,017 4 1

(0.32;0.86) (0.02;0.09)

5-comp. Gamma 14 0.29 0.03 -6,033 7 10+++

(0.32;0.84) (0.02;0.09)

5-comp. Weibull 14 0.38 0.04 -6,037 9 12+++

(0.33;0.88) (0.03;0.10)

2-comp. Lognormal 5 0.71 0.05 -6,044 8 3+++

(0.33;0.82) (0.02;0.09)

2-comp. Burr 7 0.87 0.09 -6,056 10 7+++

(0.32;0.85)** (0.02;0.09)*

Right-Pareto Lognormal 3 1.33 0.17 -6,085 11 8+++

(0.31;0.84)*** (0.02;0.09)***

Double-Pareto Lognormal 4 1.39 0.17 -6,085 12 11+++

(0.32;0.85)*** (0.02;0.09)***

Inv. Pareto-Lognormal-Pareto 4 1.76 0.25 -6,135 14 14+++

(0.33;0.87)*** (0.02;0.09)***

Lognormal-Pareto 3 1.75 0.25 -6,135 13 13+++

(0.33;0.86)*** (0.02;0.10)***

4-comp. Weibull 11 0.69 0.08 -6,144 16 18+++

(0.32;0.82) (0.02;0.09)*

Inv. Pareto-Lognormal 3 1.90 0.27 -6,152 17 16+++

(0.33;0.84)*** (0.02;0.09)***

Lognormal 2 1.89 0.27 -6,152 15 15+++

(0.32;0.85)*** (0.02;0.09)***
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Left-Pareto Lognormal 3 3.12 0.42 -6,152 18 17+++

(0.98;1.93)*** (0.14;0.29)***

4-comp. Gamma 11 0.99 0.11 -6,163 19 19+++

(0.33;0.84)** (0.02;0.09)**

5-comp. Fréchet 14 1.73 0.15 -6,172 21 21+++

(0.33;0.85)*** (0.02;0.09)***

4-comp. Fréchet 11 1.57 0.14 -6,174 20 20+++

(0.33;0.85)*** (0.02;0.09)***

5-comp. Exponential 9 1.94 0.11 -6,260 22 23+++

(0.32;0.86)*** (0.02;0.10)**

3-comp. Fréchet 8 1.61 0.17 -6,261 23 22+++

(0.32;0.83)*** (0.02;0.09)***

4-comp. Exponential 7 1.79 0.14 -6,298 24 24+++

(0.32;0.84)*** (0.02;0.09)***

Inv. Pareto-Burr 4 2.17 0.30 -6,370 26 26+++

(0.33;0.85)*** (0.03;0.09)***

Inv. Pareto-Burr-Pareto 5 2.17 0.30 -6,370 28 28+++

(0.32;0.85)*** (0.02;0.10)***

Burr-Pareto 4 2.17 0.30 -6,370 27 27+++

(0.32;0.85)*** (0.02;0.09)***

Burr 3 2.17 0.30 -6,370 25 25+++

(0.32;0.84)*** (0.02;0.09)***

3-comp. Weibull 8 1.71 0.18 -6,393 29 29+++

(0.32;0.84)*** (0.02;0.10)***

Inv. Pareto-Fréchet-Pareto 4 3.05 0.40 -6,530 30 30+++

(0.33;0.83)*** (0.02;0.09)***

3-comp. Gamma 8 2.37 0.25 -6,532 31 32+++

(0.33;0.85)*** (0.02;0.09)***

2-comp. Fréchet 5 2.55 0.32 -6,538 32 31+++

(0.32;0.84)*** (0.02;0.09)***

3-comp. Exponential 5 2.76 0.28 -6,633 33 33+++

(0.32;0.85)*** (0.02;0.09)***

Inv. Pareto-Weibull-Pareto 4 3.60 0.48 -6,829 35 35+++

(0.32;0.86)*** (0.02;0.09)***

Weibull-Pareto 3 3.60 0.48 -6,829 34 34+++

(0.32;0.88)*** (0.02;0.10)***

Inv. Pareto-Gamma-Pareto 4 3.87 0.52 -6,848 37 39+++

(0.31;0.87)*** (0.02;0.09)***
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Gamma-Pareto 3 3.87 0.52 -6,848 36 37+++

(0.32;0.84)*** (0.02;0.10)***

Inv. Pareto-Exponential-Pareto 3 3.96 0.54 -6,851 39 38+++

(0.32;0.82)*** (0.02;0.09)***

Exponential-Pareto 2 3.96 0.54 -6,851 38 36+++

(0.32;0.85)*** (0.03;0.09)***

2-comp. Weibull 5 2.96 0.32 -6,920 40 40+++

(0.32;0.87)*** (0.03;0.09)***

Fréchet-Pareto 3 4.60 0.64 -7,404 42 42.5+++

(0.32;0.85)*** (0.02;0.09)***

Inv. Pareto-Fréchet 3 4.60 0.64 -7,404 42 42.5+++

(0.33;0.85)*** (0.02;0.09)***

Fréchet 2 4.60 0.64 -7,404 41 41+++

(0.32;0.84)*** (0.02;0.09)***

2-comp. Gamma 5 4.23 0.54 -7,694 44 44+++

(0.32;0.86)*** (0.02;0.10)***

2-comp. Exponential 3 7.16 0.84 -8,488 45 45+++

(0.33;0.84)*** (0.03;0.09)***

Inv. Pareto-Weibull 3 8.31 1.13 -9,030 47 47+++

(0.32;0.85)*** (0.02;0.09)***

Weibull 2 8.31 1.13 -9,030 46 46+++

(0.32;0.82)*** (0.02;0.09)***

Inv. Pareto-Gamma 3 16.40 2.26 -13,169 48 49+++

(0.33;0.84)*** (0.02;0.09)***

Gamma 2 16.42 2.26 -13,171 49 48+++

(0.32;0.87)*** (0.02;0.10)***

Exponential 1 37.71 5.58 -25,359 50 50+++

(0.32;0.87)*** (0.02;0.09)***

Inv. Pareto-Exponential 2 37.71 5.58 -25,359 51 51+++

(0.32;0.85)*** (0.02;0.09)***

Pareto 2 41.69 5.06 -31,612 52 52+++

(0.33;0.83)*** (0.02;0.09)***

Notes: All distributions fitted using Maximum Likelihood.

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic

with 999 replications. ∗∗∗, ∗∗, ∗ indicate significance of this test at 1%, 5% and 10% respectively.

+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms

of BIC (∆BIC) providing strong evidence in favour of the first-ranked distribution (∆BIC > 10), moderate

evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.

a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.
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Table 14: Decomposition of procentual welfare gains from a reduction in variable trade costs τ ij = 3→ (τ ij)′ = 1.

Distribution Parms. ln
U′i
Ui

ln
τ ′ij
τij

ln
M′i
Mi

ln
1−G(ω∗ij)

′

1−G(ω∗ij)
ln
ω̃(ω∗ij)

′

ω̃(ω∗ij)
ln
λ′ij
λij

Pareto 2 - 1.10 - - - -

(-0.00;0.00)*** (1.10;1.10) (-0.22;-0.22)*** (-0.00;0.00)*** (0.00;0.00)*** (-0.88;-0.88)***

Weibull 2 0.15 1.10 -0.16 0.12 1.35 -2.26

(0.15;0.15)*** (1.10;1.10) (-0.16;-0.16)*** (0.12;0.13)*** (1.30;1.41)*** (-2.32;-2.21)***

Inv. Pareto-Weibull 3 0.15 1.10 -0.16 0.12 1.35 -2.26

(0.15;0.15)*** (1.10;1.10) (-0.16;-0.16)*** (0.12;0.13)*** (1.30;1.41)*** (-2.32;-2.21)***

Left-Pareto Lognormal 3 0.16 1.10 -0.17 0.15 0.60 -1.51

(0.16;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.58;0.62)*** (-1.53;-1.49)***

Inv. Pareto-Lognormal 3 0.17 1.10 -0.17 0.15 0.58 -1.49

(0.16;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.56;0.60)*** (-1.51;-1.47)***

Lognormal 2 0.17 1.10 -0.17 0.15 0.53 -1.44

(0.17;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.51;0.55)*** (-1.46;-1.42)***

Right-Pareto Lognormal 3 0.18 1.10 -0.18 0.17 0.28 -1.19

(0.18;0.19)** (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.23;0.33)** (-1.24;-1.13)**

2-comp. Weibull 5 0.18 1.10 -0.13 0.11 0.57 -1.46

(0.18;0.18)*** (1.10;1.10) (-0.14;-0.13)*** (0.11;0.11)*** (0.56;0.59)*** (-1.48;-1.45)***

3-comp. Weibull 8 0.19 1.10 -0.19 0.18 0.25 -1.16

(0.18;0.19)*** (1.10;1.10) (-0.19;-0.19)*** (0.18;0.19)*** (0.25;0.26)*** (-1.17;-1.15)***

4-comp. Weibull 11 0.19 1.10 -0.18 0.17 0.22 -1.12

(0.19;0.19)*** (1.10;1.10) (-0.18;-0.17)*** (0.16;0.17)*** (0.21;0.23)*** (-1.13;-1.11)***

5-comp. Weibull 14 0.19 1.10 -0.18 0.18 0.22 -1.12

(0.19;0.19)** (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.21;0.23)*** (-1.14;-1.11)***

Empirical 0 0.19 1.10 -0.18 0.18 0.20 -1.10

4-comp. Lognormal 11 0.19 1.10 -0.18 0.18 0.20 -1.10
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(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.18;0.22) (-1.13;-1.08)

5-comp. Lognormal 14 0.19 1.10 -0.19 0.18 0.20 -1.10

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.19) (0.17;0.22) (-1.12;-1.07)

2-comp. Lognormal 5 0.19 1.10 -0.17 0.17 0.23 -1.13

(0.19;0.19) (1.10;1.10) (-0.18;-0.17)*** (0.16;0.17)*** (0.22;0.25)*** (-1.15;-1.12)***

3-comp. Lognormal 8 0.19 1.10 -0.18 0.18 0.19 -1.09

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.16;0.22) (-1.12;-1.06)

Lognormal-Pareto 3 0.22 1.10 -0.22 0.22 0.02 -0.90

(0.20;0.21)*** (1.10;1.10) (-0.22;-0.20)*** (0.20;0.22)*** (0.04;0.14)*** (-1.04;-0.93)***

Burr 3 - 1.10 - - - -

(0.20;0.21)*** (1.10;1.10) (-0.21;-0.19)*** (0.19;0.21)*** (0.03;0.12)*** (-1.02;-0.92)***

2-comp. Burr 7 - 1.10 - - - -

(0.19;0.20) (1.10;1.10) (-0.20;-0.18) (0.17;0.20) (0.10;0.22) (-1.12;-1.00)

3-comp. Burr 11 - 1.10 - - - -

(0.19;0.20)** (1.10;1.10) (-0.21;-0.18) (0.18;0.21) (0.08;0.20) (-1.11;-0.97)

4-comp. Burr 15 - 1.10 - - - -

(0.19;0.21)** (1.10;1.10) (-0.21;-0.18)** (0.18;0.21)** (0.07;0.20)** (-1.10;-0.96)**

5-comp. Burr 19 - 1.10 - - - -

(0.19;0.21)*** (1.10;1.10) (-0.22;-0.19)*** (0.18;0.22)*** (0.05;0.19)*** (-1.09;-0.94)***

Burr-Pareto 4 - 1.10 - - - -

(0.20;0.21)*** (1.10;1.10) (-0.21;-0.19)*** (0.19;0.21)*** (0.02;0.12)*** (-1.02;-0.91)***

Double-Pareto Lognormal 4 - 1.10 - - - -

(0.20;0.22)*** (1.10;1.10) (-0.20;-0.19)*** (0.19;0.20)*** (0.02;0.09)*** (-0.98;-0.90)***

Fréchet 2 - 1.10 - - - -

(0.22;0.22)*** (1.10;1.10) (-0.14;-0.08)*** (0.08;0.14)*** (0.00;0.01)*** (-0.89;-0.88)***

2-comp. Fréchet 5 - 1.10 - - - -

(0.22;0.22)*** (1.10;1.10) (-0.15;-0.10)*** (0.10;0.15)*** (0.00;0.01)*** (-0.89;-0.88)***

3-comp. Fréchet 8 - 1.10 - - - -
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(0.22;0.22)*** (1.10;1.10) (-0.15;-0.11)** (0.11;0.15)** (0.00;0.01)*** (-0.89;-0.88)***

4-comp. Fréchet 11 - 1.10 - - - -

(0.22;0.22)*** (1.10;1.10) (-0.15;-0.11)** (0.11;0.15)** (0.00;0.01)*** (-0.89;-0.88)***

5-comp. Fréchet 14 - 1.10 - - - -

(0.22;0.22)*** (1.10;1.10) (-0.15;-0.10)*** (0.10;0.15)** (0.00;0.01)*** (-0.89;-0.88)***

Fréchet-Pareto 3 - 1.10 - - - -

(0.22;0.22)*** (1.10;1.10) (-0.14;-0.08)*** (0.08;0.14)*** (0.00;0.01)*** (-0.89;-0.88)***

Inv. Pareto-Burr 4 - 1.10 - - - -

(0.20;0.22)*** (1.10;1.10) (-0.21;-0.19)*** (0.19;0.21)*** (0.02;0.11)*** (-1.00;-0.90)***

Inv. Pareto-Burr-Pareto 5 - 1.10 - - - -

(0.20;0.22)*** (1.10;1.10) (-0.21;-0.19)*** (0.19;0.20)*** (0.02;0.11)*** (-1.00;-0.90)***

Inv. Pareto-Fréchet 3 - 1.10 - - - -

(0.22;0.22)*** (1.10;1.10) (-0.14;-0.08)*** (0.08;0.14)** (0.00;0.01)*** (-0.89;-0.88)***

Inv. Pareto-Fréchet-Pareto 4 - 1.10 - - - -

(0.21;0.22)*** (1.10;1.10) (-0.19;-0.18) (0.18;0.19)** (0.01;0.07)*** (-0.96;-0.89)***

Inv. Pareto-Lognormal-Pareto 4 - 1.10 - - - -

(0.21;0.22)*** (1.10;1.10) (-0.20;-0.18) (0.18;0.20)*** (0.01;0.08)*** (-0.97;-0.89)***

Inv. Pareto-Weibull-Pareto 4 - 1.10 - - - -

(0.21;0.22)*** (1.10;1.10) (-0.18;-0.16)** (0.16;0.18) (0.00;0.05)*** (-0.93;-0.88)***

Weibull-Pareto 3 - 1.10 - - - -

(0.21;0.22)*** (1.10;1.10) (-0.18;-0.16)** (0.16;0.18) (0.00;0.05)*** (-0.93;-0.88)***

Notes: ln
(Wi)′
Wi indicates the log changes in real per-capita income due to an exogenous increase in variable trade costs τij to τ ′ij . This is further

decomposed into the channels through which trade affects welfare: trade costs (τ ij), the number of firms (M i), the probality of successful entry into the

domestic market (m0
ωii∗

), the average productivity of firms exporting from i to j (mσ−1
ωij∗

) and the bilateral trade share (λij).

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped statistics with 999 replications. ∗∗∗, ∗∗, ∗ indicate the

rejection of a signifcant overlap of the parametric bootstrapped statistic with the empirical statistic at 1%, 5% and 10% respectively.

32



Appendix B Fitting truncated data

This section extends the methodology of the main paper to allow fitting the distributions to trun-

cated data. This allows us to single out and focus on tail performance while generalizing the

proposed distributional fits to unrepresentative and/or truncated data. It also allows us to evalu-

ates the ability of FMMs to accurately capture the tail of the empirical distribution.

B.1 (Inverse) Pareto

The (Inverse) Pareto distribution is a special distribution, being truncated from (above) below by

definition.1 This means that the (upper) lower truncation point lies within the parameter space of

the distribution, and distribution fits can be optimized accordingly. The ML estimator as specified

in equation 4 merely assumes the exogenously applied truncation points as the scale parameter.

Obtaining an accurate estimate for the (upper) lower bound is, however, vital to the accuracy

of the estimated shape parameter k̂. Choosing a (maximum) minimum too (high) low results in a

biased shape parameter, as one will be fitting a power-law to non-power-law data. Choosing a value

too (low) high, on the other hand, increases the statistical error and bias from finite-size effects on

the shape parameter, as one discards legitimate data points. Moreover, it is widely documented

that the minimum and shape parameters of the Pareto distribution exhibit a positive correlation

(Eeckhout, 2004; di Giovanni and Levchenko, 2013; Head et al., 2014; Freund and Pierola, 2015;

Bee and Schiavo, 2018).

In order to obtain an accurate estimate for the lower (upper) bound, therefore, we rely on

a formal decision rule developed by Clauset et al. (2009).2 For the ordered productivity set

{xb; b = 1, . . . , B}, we evaluate every xb as a potential (xmax) xmin, estimating the ML estim-

ate of the power-law exponent k. We then use the Kolmogorov-Smirnov statistic to select the

1Fully truncated (both from below and above) Pareto distributions can be deduced from a truncated probability
density function (see Eq. 2) and have been used in the economic literature (Helpman et al., 2008; Melitz and Redding,
2014; Feenstra, 2018).

2Alternative methodologies to determine the lower Pareto bound consist of (i) relying on a visual examination,
looking for a ‘kink’ in the distribution above which the relationship between log-rank and log-size is approximately
linear (di Giovanni and Levchenko, 2013; Bas et al., 2017), (ii) relying on export sales and assuming a truncation
parameter equal to the minimum of sales (see, for instance, Freund and Pierola (2015)), (iii) determining the lower
bound to ensure a Pareto parameter large enough to deliver finite moments when calibrating their theoretical models
(Head et al., 2014; Bee and Schiavo, 2018), and (iv) estimating the lower bound assuming a mixed Lognormal-Pareto
distribution (Malevergne et al., 2011; Bakar and Nadarajah, 2013; Nigai, 2017). Such methods are either subject to
large measurement errors and inconsistencies or restrictive in their need to assume a distributional relation between
the bulk and the tail of the distribution.
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optimum (xmax) xmin. It is defined as the cutoff which minimizes the maximum absolute deviation

of the empirical from the theoretical CDF:

TKS,x̂max = sup
x≤x̂max

∣∣∣∣∣ 1

B

B∑
b=1

I(xb ≤ x̂max)−GIP (x; k̂, x̂max)

∣∣∣∣∣
TKS,x̂min = sup

x≥x̂min

∣∣∣∣∣ 1

B

B∑
b=1

I(xb ≥ x̂min)−GP (x; k̂, x̂min)

∣∣∣∣∣ , (1)

where IA is the indicator of event A.

B.2 Hump-shaped, piecewise composite and product distributions

Consisting of individual truncated densities, the estimation of piecewise composite distributions on

truncated data is by its definition straightforward. Maximum likelihood methods for the remaining

hump-shaped and product distributions can easily be adapted by truncating the distribution to be

restricted within the data domain. The resulting truncated probability density function (g∗(x)) is

then specified within the (exogenously determined) boundaries x ∈
[
cl, cu

]
:

g∗(x) =
g(x)

G(cu)−G(cl)
. (2)

B.3 FMM

The EM-algorithm can be adapted to fitting data only to truncated data within the (exogenously

determined) boundaries x ∈
[
cl, cu

]
. We specify the conditional densities

g(x|Ψ, cl ≤ x ≤ cu) =

∑I
i=1 πimi(x|θi)

G(cu|Ψ)−G(cl|Ψ)

=

I∑
i=1

πi
Mi(c

u|θi)−Mi(c
l|θi)

G(cu|Ψ)−G(cl|Ψ)

mi(x|θi)
Mi(cu|θi)−Mi(cl|θi)

=
I∑
i=1

ηimi(x|θi, cl ≤ x ≤ cu), (3)

with ηi > 0,
∑I

i=1 ηi = 1 and Mi the component-specific Cumulative Distribution Function.
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The Q-function becomes

Q(Ψ|Ψ(s−1)) = E
[
logL(x|Ψ)|x,Ψ(s−1)

]
=

B∑
b=1

I∑
i=1

π
(s)
bi

[
log(ηi) + log(mi(xb|θi, cl ≤ xb ≤ cu))

]
, (4)

where the posterior probability that xb comes from the ith mixture is not affected by the

truncation:

π
(s)
bi =

η
(s−1)
i mi(xb|θ

(s−1)
i , cl ≤ xb ≤ cu))∑I

i=1 η
(s−1)
i mi(xb|θ

(s−1)
i ), cl ≤ xb ≤ cu)

=
π

(s−1)
i mi(xb|θ

(s−1)
i )∑I

i=1 π
(s−1)
i mi(xb|θ

(s−1)
i )

. (5)

The M-step then again consists of maximizing the Q-function over the parameters Ψ. Iterating

over the E- and M-step until the algorithm converges provides us with distributions fitted to the

truncated data.
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Appendix C Robustness and Extensions

C.1 Extension to other distributions

The superior performance of FMMs is not limited to the Lognormal distribution. Appendix Table

7 displays the results of fits to the complete data expanding to FMMs of distributions often used in

the economic literature such as the Exponential, Gamma, Weibull, Burr, and Fréchet distribution.

Most of these mixtures are not able to match the performance of the Lognormal. Only the Burr

distribution provides an equivalent fit to the PDF and CDF.3

Compared to Pareto-tailed combinations of distributions, we find that also mixtures of Weibull

and Gamma can provide an improved distribution fit. Overall, the currently favored Double-Pareto

Lognormal (Sager and Timoshenko, 2019) and Lognormal-Pareto (Nigai, 2017) distribution are

ranked sixteenth and thirty-first, respectively, according to BIC, out of 52 considered distributions.

The consistent excellent performance of the Lognormal distribution can be motivated from two

perspectives. From the perspective of overall fit, a mixture of (log-) normal distributions with

sufficient components is assumed to be able to approach all distributions (McLachlan and Peel,

2000). From a generative perspective for individual components, the Lognormal distribution is the

realization of applying the Central Limit Theorem (CLT) in the log domain: firm heterogeneity

will approximately be Lognormal if it is the multiplicative product of many independent random

variables. This corresponds with extensions of heterogeneous firms models à la Melitz (2003) that

consider multi-dimensional firm heterogeneity, taking into consideration the product dimension

(Bernard et al., 2009) or uncertainty in demand and/or supply (see for instance De Loecker (2011);

Bas et al. (2017); Sager and Timoshenko (2019); Gandhi et al. (2020)).

C.2 Robustness

We scrutinize the robustness of our results with several additional analyses. First, we examine

whether our results are not caused by sample selection. To this end, we restrict our dataset to

the manufacturing sector only (see Appendix Table 10) and find the performance of FMMs to

improve relative to Pareto-tailed distributions. Second, we inspect whether our results are not due

to outliers in the tails of the distribution by discarding the 1,000 smallest and largest observations

3The Burr distribution fails to match higher moments of the data, however. See also section 6.
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from our dataset. Results in Appendix Table 11 again confirm the superiority of FMMs.

The AIC reported in Table 1 is asymptotically equivalent to leave-one-out cross-validation

(Stone, 1977). We perform a robustness check on the out-of-sample predictive accuracy of our

results using (i) a Monte Carlo Cross-Validation (MCCV), (ii) k−fold cross-validation, and (iii) an

out-of-sample test for model selection. The MCCV consists of partitioning the data B = 20 times

into disjoint training and test subsets where the test subset is a fraction β = 0.5 of the overall data

(Smyth, 1996). The k-fold cross-validation consists of partitioning the data into k = 10 disjoint

subsets of the data (Grimm et al., 2017). The model is estimated based on k−1 partitions (training

set). Then the model with unknown parameters fixed at their previously estimated values is applied

to the remaining partition (the kth partition that was not part of the training sample, test set).

This is repeated k times with each of the k potential configurations of the empirical data (Grimm

et al., 2017). For both cross-validation procedures, we retain the log-likelihood for each iteration

and show the resulting average log-likelihood. The out-of-sample test evaluates the distribution fit

by the log-likelihood for Portuguese domestic sales in 2007, relying on the coefficients estimated

on Portuguese domestic sales in 2006. The results of this exercise (see Online Appendix Table 12)

confirm the main results and demonstrate that a mixture of Lognormals improve the model fit

without over-fitting the data.

Finally, we also provide external validation, in line with Nigai (2017), by fitting the considered

distributions to the U.S. Census 2000 city size distribution data. This dataset has been subject to an

extensive debate in the city size literature, including the discussion between Eeckhout (2004, 2009)

and Levy (2009).4 Appendix Table 13 provides the test results, demonstrating that the city size

distribution is neither Lognormal, Pareto, nor Pareto-tailed Lognormal. It is best approximated by

a 2-component Lognormal distribution (according to the BIC). These results provide an overview of

the city size literature until now and are in line with the findings of Kwong and Nadarajah (2019).

4The dataset is available at https://www.aeaweb.org/aer/data/sept09/20071478 data.zip.
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Appendix D Motivation and identification of generative processes

for mixture models

FMMs can be utilized in two ways. First, they can be used as a semi-parametric, flexible approxim-

ation of the overall distribution, which is the case in this paper. Second, they are model-based clus-

tering methods when a certain distribution is imposed (Fop et al., 2018; Grün, 2018). While both

applications rely on the idea that discrete subpopulations define the overall distribution, the semi-

parametric approximation does not claim to identify these subpopulations. This appendix concep-

tualizes possible Data Generative Processes (DGPs) for FMMs based on theoretical and empirical

work in the economics literature. We then elaborate on the identification difficulties/opportunities

of the underlying mixture components in the context of productivity distributions.

D.1 Generative processes

Many economic models rely on the assumption that the firm size distribution originates from firm

dynamics in productivity (see for instance Hopenhayn (1992); Luttmer (2007); Rossi-Hansberg and

Wright (2007); Costantini and Melitz (2008); Arkolakis (2016)). In this section, we will use a

simplified version of such productivity dynamics for explanatory purposes. Consider productivity

dynamics specified as a first-order autoregressive process:

lnωbt = c+ ρlnωbt−1 + ηbt, (6)

where ηbt is a white noise process with zero mean and constant variance σ2.

Some empirical evidence suggests that productivity dynamics, and therefore the resulting pro-

ductivity distributions, are endogenous to exporting (De Loecker, 2013), importing (Kasahara and

Rodrigue, 2008), innovation (Aw et al., 2011), management practices (Bloom and Reenen, 2011;

Caliendo et al., 2020), . . . Overall, there are “many sources of heterogeneity that support the idea

of discrete subpopulations likely to differ in important characteristics . . . ” (Perline (2005),p.80).

In the case of exporting, the endogenous evolution of productivity results in an exporting pro-

ductivity premium. This can empirically be observed from the standard textbook comparison of

cross-sectional productivity densities between exporting and non-exporting firms (see Figure 8).
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Figure 8: Productivity density of Portuguese firm productivity in 2006 for all, exporting- and non-
exporting firms.
Notes: Productivity is measured as domestic sales (relative to the mean) to the power of 1/(σ − 1) with σ, the

elasticity of substitution between varieties, set to four.

Building on equation 6, a simplified version of the empirical specification to identify such ex-

porting productivity premium, and replicate Figure 8, is essentially a specifically parametrized

FMM:

lnωbt = α0 + β0EXPb + α1lnωbt−1 + β1EXPb × lnωbt−1 + ηbt

= EXPb [β0 + β1lnωbt−1] + (1− EXPb) [α0 + α1lnωbt−1] + ηbt, (7)

with EXPb a dummy variable that takes the value 1 when the firm b is an exporter and 0

otherwise.

Whereas the components are identified using an exporter dummy variable in this example,

FMMs are a semi-parametric specification that remain agnostic about the (possibly multiple) de-

terminants of the unobserved components and allow the data to determine these components:5

5Note that, for simplicity, we specify the variance to be constant between components. FMMs in the main analysis
allow for the variance to differ between components.
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lnωbt =
I∑
i=1

Iib
[
βi0 + βi1lnωbt−1

]
+ ηbt. (8)

D.2 Identification

As stated before, FMM’s can focus on the semi-parametric, flexible approximation of the overall

distribution or on model-based clustering. This paper purely focuses on the semi-parametric ap-

proximation. First, we take no à-priori stance on distributional specification.6 Second, even if one

is willing to assume distributional specification such as the Lognormal, the underlying components

remain unidentifiable in the current setting. As the overall distribution is unimodal (see Figure

8), there is a large overlap between the underlying individual densities. These individual densities

will therefore be poorly identified. Indeed, Figure 9 displays the posterior probability distribution

for each component of the fitted 4-component Lognormal mixture from the main text. Whereas

well-identified components have a large weight near zero and 1, average probabilities lie close to

0.25 in this case and are therefore not well identified. While the overall distribution can be closely

approximated, the large overlap of individual densities results in a large uncertainty on which ob-

servation can be assigned to which density. Neither the parameter estimates used to characterize

the clusters nor the partitions derived can therefore be uniquely determined, rendering the inter-

pretation of results in terms of clustering futile (Follmann and Lambert, 1991; Hennig, 2000; Grün,

2018; Grün and Leisch, 2008).

Future research might resolve the identifiability problem relying on panel rather than cross-

sectional data. The problem as specified now is a problem in levels (the cross-section), where

it appears there is insufficient distance between different components for them to be identified.

From empirical evidence, however, it can be deduced that the different components likely originate

from differences in growth rates (Kasahara and Rodrigue, 2008; Aw et al., 2011; De Loecker, 2013;

Caliendo et al., 2020). Tracking the growth rates of individual firms over time might allow for the

6The empirical evidence in this paper seems to favor a Lognormal specification. This can be motivated from two
perspectives. From the perspective of overall fit, a mixture of (log-) normal distributions with sufficient components
is assumed to be able to approach all distributions (McLachlan and Peel, 2000). From a generative perspective
for individual components, the Lognormal distribution is the realization of applying the Central Limit Theorem
(CLT) in the log domain: firm heterogeneity will approximately be Lognormal if it is the multiplicative product of
many independent random variables. Whereas firm heterogeneity reduces to firm-level productivity in the Melitz
(2003)-model, it has been argued to be multi-dimensional when taking into consideration, for instance, the product
dimension (Bernard et al., 2009) or uncertainty in demand and/or supply (see (De Loecker, 2011; Bas et al., 2017;
Sager and Timoshenko, 2019; Gandhi et al., 2020) . . . )
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Figure 9: Posterior probability distribution for each component of the 4-components Lognormal
mixture.

variation needed to identify the components of the overall distribution.

This observation can be easily illustrated using simulated data. Building on the example of

the previous paragraph, imagine lnωbt follows an AR(1)-process with an exporting productivity

premium of 20%:

lnωbt = 1 + 1.2× EXPb + 0.7× lnωbt−1 + ηbt,

with ηbt ∼ N (0, 0.3). We simulate this evolution for 200 exporters (EXPb = 1) and 800 purely

domestic businesses over 10 years.7 The firm densities of the simulated data will look similar to

Figure 8, with two densities largely overlapping but the exporter productivity density located on

the right of domestic firms density.

If we fit, as in our main analysis, a FMM on the cross-sectional data of a selected (the first)

year, we obtain a familiar posterior probability distribution (see Figure 10). Individual clusters are

not well-identified. Exploiting the panel dimension of the data,8 however, results in well-identified

7When simulating, we allow for a run-in period of 90 years.
8Specifically, the EM estimation procedure is adapted to take into account panel data. The component probab-

ilities in our main analysis are specified over the complete data (eq. 7):

π
(s)
bi = E

[
zbi|ωb,Ψ(s−1)

]
=

π
(s−1)
i mi(ωb|θ(s−1)

i )∑I
i=1 π

(s−1)
i mi(ωb|θ(s−1)

i )
.

When working with panel data, we adapt this specification to take into account the time dimension:

π
(s)
bi = E

[
zbi|ωbt,Ψ(s−1)

]
=

π
(s−1)
i

∏T
t=1mit(ωbt|θ(s−1)

i )∑I
i=1 π

(s−1)
i

∏T
t=1mit(ωbt|θ(s−1)

i )
.
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components. As can be observed in Figure 11, the posterior probabilities predominantly take the

values zero or one. Once components are well-identified, one can try to determine which mechanisms

motivate the existence of FMMs from a generative perspective.

Class 1 Class 2
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100
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Figure 10: Cross-sectional posterior probability
distribution for each component of the simulated
2-components normal mixture.
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Figure 11: Panel posterior probability distri-
bution for each component of the simulated 2-
components normal mixture.

Note that the probabilities are specified to be constant over time, meaning that we do not allow for regime-switching
in this exercise.
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Appendix E Heterogeneous firms model

This appendix provides a detailed description of the heterogeneous firms models relied upon in

the paper. We follow Dewitte (2020) in presenting a firm heterogeneous open economy model of

Melitz (2003) with a finite number of firms. The model features Constant Elasticity of Substitution

(CES)-demand and monopolistic competition between a finite number of firms who ignore their

aggregate impact (Dixit and Stiglitz, 1977; Krugman, 1980; di Giovanni and Levchenko, 2012), while

remaining agnostic on the parametric specification of firm-level heterogeneity. For the number of

firms going to infinity, the model is equivalent to the Melitz (2003)- model.

E.1 Setup

Demand Consumer preferences in country j ∈ J are defined over a finite number of horizontally

differentiated varieties ($ ∈ Ωi) originating from country i ∈ I and are assumed to take the

Constant Elasticity of Substitution (CES) utility (U) form

U j =

 I∑
i=1

∑
$∈Ωi

qij ($)
σ−1
σ d$

 σ
σ−1

, (9)

with σ the elasticity of substitution between varieties. Utility maximization defines the optimal

consumption and expenditure decisions over the individual varieties

qij($)

Qj
=

[
pij($)

P j

]−σ
, (10)

where the set of varieties consumed is considered as an aggregate good Q ≡ U and P is the

CES aggregate price index.

Supply There is a finite number of businesses (b ∈ B) that choose to supply a distinct horizontally-

differentiated variety. They are heterogeneous in terms of their productivity ωb ∈ [0,∞] drawn from

the unconditional Cumulative Distribution Function (CDF) G(ωb) after paying a fixed cost f ie in
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terms of production factor Li to enter the market.9 There is zero probability of firm death.10 Sup-

ply of the production factor to the individual firm is perfectly elastic so that firms are effectively

price (W i) takers on the input markets. Once active, firms from country i have to pay a fixed cost

f ij to produce goods destined for country j.

The cost function of the firm involves a fixed production cost, iceberg trade costs τ ij > 1 and a

constant marginal costs that depends on its productivity: f ij +
(
τ ijqij

ω

)
W i. Profit maximization

of the firm, then:

max
qij

πij = max
qij

[
pijqij −

(
f ij − τ ijqij

ω

)
W i

]
= max

qij

[(
qij
)σ−1

σ
(
Qj
) 1
σ P j −

(
f ij − τ ijqij

ω

)
W i

]
, (11)

results in an optimal quantity produced:

∂πij

∂qij
= 0

⇔

σ − 1

σ

(
qij
)− 1

σ
(
Qj
) 1
σ P j =

τ ijW i

ω

⇔

qij =

(
σ

σ − 1

τ ijW i

ω

)−σ
Qj
(
P j
)σ
. (12)

and an equilibrium price as a constant markup over marginal costs pij = σ
σ−1

τ ijW i

ω :

(
qij

(Qj)

)−1
σ

P j = pij

pij =
σ

σ − 1

τ ijW i

ω
. (13)

9As ωb is the sole heterogeneity component identifying individual firms, we drop the subscript b in further
derivations.

10The static specification in which there is zero probability of firm death follows most of the international trade
literature.
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The realized revenue expression for firms from country i selling in destination j at time t can

then be expressed as:

xij = pijqij =
(
qij
)σ−1

σ
(
Qj
) 1
σ P j

=

(
σ

σ − 1

τ ijW i

ω

)1−σ
Qj
(
P j
)σ

(14)

E.2 Operating decisions

In line with (Dixit and Stiglitz, 1977; Krugman, 1980; di Giovanni and Levchenko, 2012), we assume

that the marginal firm ignores the impact of its own production level on the aggregate economy.

The zero cutoff profit conditions then determine the necessary productivity levels for serving each

market.

πij = 0 = pijqij −
(
f ij − τ ijqij

ωij∗

)
W i,

=

(
σ

σ − 1

τ ijW i

ωij∗

)1−σ
Qj
(
P j
)σ − f ijW i −

(
σ

σ − 1

τ ijW i

ωij∗

)−σ
Qj
(
P j
)σ τ ij

ωij∗
W i,

=

(
σ

σ − 1

τ ijW i

ωij∗

)1−σ
Qj
(
P j
)σ − f ijW i −

(
σ

σ − 1

)−σ (τ ijW i

ωij∗

)1−σ
Qj
(
P j
)σ
,

=

(
1− σ − 1

σ

)(
σ

σ − 1

τ ijW i

ωij∗

)1−σ
Qj
(
P j
)σ − f ijW i,

⇔

σf ijW i =

(
σ

σ − 1

τ ijW i

ωij∗

)1−σ
Qj
(
P j
)σ
. (15)

Combining the zero cutoff profit conditions allows us to write the export cutoff as a function of

a foreign domestic productivity cutoff, variable and fixed costs and the wages:

ωij∗ =

(
W i

W j

) σ
σ−1

(
f ij

f jj

) 1
σ−1

(
τ ij

τ jj

)
ωjj∗. (16)

Similarly, we can combine the zero cutoff profit conditions from a single origin country, linking

the domestic and export productivity cutoffs:
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ωij∗ =
τ ij

τ ii

(
P j

P i

) σ
1−σ

(
Qi

Qj
f ij

f ii

) 1
σ−1

ωii∗. (17)

In this paper, we focus on parameter values such that there is, in line with empirical evidence,

selection into exporting (ωij∗ > ωii∗). This implies

• A high fixed cost of exporting relative to the fixed cost of production. The revenue required

to cover the fixed export cost is then large relative to the revenue required to cover the fixed

production cost, implying that only high productivity firms find it profitable to serve both

markets.

• A high home price index relative to the foreign price index, and a large home market relative

to the foreign market. Only high productivity firms receive enough revenue in the relatively

small and competitive foreign market to cover the fixed cost of exporting.

• Variable trade costs increase the exporting productivity cutoff relative to the zero-profit

productivity cutoff by increasing prices and reducing revenue in the export market.

The equilibrium value of these cutoffs are uniquely determined by the free entry condition,

requiring the probability of successful entry times the expected future value of entry conditional

upon successful entry to equal the sunk entry cost:
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J∑
j=1

E
[
πij |ω > ωij∗

]
= f ieW i

J∑
j=1

1

B

B∑
b=1

I
(
ω > ωij∗

)
πij = f ieW i

J∑
j=1

1

B

B∑
b=1

I
(
ω > ωij∗

) [ 1

σ

(
σ

σ − 1

τ ijW i

ω

)1−σ
Qj
(
P j
)σ − f ijW i

]
= f ieW i

J∑
j=1

f ijW i 1

B

B∑
b=1

I
(
ω > ωij∗

) [( ω

ωij∗

)σ−1
− 1

]
= f ieW i

J∑
j=1

f ij

[(
ωij∗

)1−σ 1

B

B∑
b=1

I
(
ω > ωij∗

)
ωσ−1 − 1

B

B∑
b=1

I
(
ω > ωij∗

)
ω0

]
= f ie

J∑
j=1

f ij
[(
ωij∗

)1−σ
mσ−1
ωij∗
−m0

ωij∗

]
= f ie, (18)

where we denote by mr
y the y-bounded, r-th sample moment of the productivity distribution.

For the number of firms going to infinity, the law of large numbers kicks in such that we replace

these sample moments with their continuous equivalent
(
µr(y) =

∫∞
y ωrg(ω)dω

)
, providing us with

the well-known continuous free-entry equation as specified by (Melitz, 2003).

Using the relation between productivity cutoffs (eq. 16), the free entry condition (eq. 18)

determines a unique equilibrium values of these cutoffs.11 Thus, a parametrization of the Melitz

(2003)-model in relation to firm heterogeneity relies solely on the bounded (by the respective

productivity cutoffs) 0th and (σ − 1)th moments of the productivity distribution (Nigai, 2017;

Dewitte, 2020).

E.3 Aggregation

Summing equation 14 across all active firms, we obtain an expression for aggregate trade between

country i and j:

11Sufficient conditions for this equilibrium to exist are that the term in brackets of equation (18) is (i) finite and

(ii) a decreasing function of the cutoffs (Melitz, 2003, p.1704). The second condition corresponds to g(x)x
1−G(x)

increasing

to infinity on (0,∞).
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Xij =

(
σ

σ − 1
τ ijW i

)1−σ
Qj
(
P j
)σ
M iemσ−1

ωij∗
(19)

The number of successful entrants
[
1−G(ωii∗)

]
M ie is specified as the ratio of aggregate over

average revenue:

M i =
[
1−G(ωii∗)

]
M ie =

Xi

E [xi]
. (20)

We can rewrite this number of firms, using the free entry condition, goods and labor market

clearing
(
Xi = W iLi

)
, as a function of exogenous variables:

M i =
W iLi

σ
(

f ie

1−G(ωii∗)
+
∑J

j=1
1−G(ωij∗)
1−G(ωii∗)

f ij
)
W i

=
Li

σ
(

f ie

1−G(ωii∗)
+
∑J

j=1
1−G(ωij∗)
1−G(ωii∗)

f ij
) . (21)

Assuming a two-country symmetric economy and setting the wage of the composite factor as

the numeraire, welfare can be calculated as the inverse of the price index

Wi = (P i)−1. (22)

The price index can be deduced from equation 19:

P j =

[(
σ

σ − 1
τ ijW i

)1−σ 1

λij

M i

1−G(ωii∗)
mσ−1
ωij∗

] 1
1−σ

, (23)

where we denote the share of expenditure by j on goods from i, the bilateral trade share, by

λij = Xij

Xj .
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The percentage changes in welfare from a change in variable trade costs (τ → τ ′) can then

written as:

100× ln(Wi)′

Wi
= 100×−ln(P i)′

P i
(24)

= 100×−ln(P j)′

P j

= 100×−

[
ln

(τ ij)′

(τ ij)
− 1

σ − 1

(
ln

(M i)′

M i
− ln1−G(ωii∗)′

1−G(ωii∗)
+ ln

(mσ−1
ωij∗

)′

mσ−1
ωij∗

− ln(λij)′

λij

)]

= 100×−

[
ln

(τ ij)′

(τ ij)
− 1

σ − 1

(
ln

(M i)′

M i
− ln

(m0
ωij∗)

′

m0
ωij∗

+ ln
(mσ−1

ωij∗
)′

mσ−1
ωij∗

− ln(λij)′

λij

)]
.

E.4 Parametrization

To parametrize the previously described model, we need to parametrize two statistics related to

the productivity distribution: the 0th and (σ − 1)the y-bounded moments of the productivity

distribution (Nigai, 2017). As described in (Dewitte, 2020), this corresponds to the 0th and 1st y-

bounded moments of the sales distribution if the parametric distribution is stable under power-law

transformations.

Assuming a parametric distribution and under the assumption of an infinite number of firms,

we can calculate the necessary analytical expressions using the distributional parameters from our

empirical analysis to capture heterogeneity. This is the standard approach in the literature. Fol-

lowing (Nigai, 2017; Dewitte, 2020), we can also capture heterogeneity directly from the empirical,

finite data. To compare GFT obtained assuming a parametric distribution and GFT obtained from

the finite data, we perform a parametric bootstrap. This parametric bootstrap generates a range

of finite sample estimates under the hypothesis that a certain parametric distribution generates the

observed data (Dewitte, 2020).

E.4.1 Continuum of firms

When there is an infinite number of firms, the parametrization of the heterogeneity distribution

consists of calculating the y-bounded 0th and 1st population moments of the sales distribution:
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µry =

∫ ∞
y

xrg(x)dx. (25)

The analytical expressions of these parametric implied population moments are gathered in

Table 4 and 5 for all distributions considered. As bounded moments are not generally available,

the mathematical elaboration on obtaining these expressions can be found in the section F.

E.4.2 Finite number of firms

Under the assumption of a finite number of firms in the economy, the parametrization of the model

consists of calculating the y-bounded 0th and 1st moment of the sales distribution:

mr
y =

1

B

B∑
b=1

I (x > y)xr. (26)

These moments can easily be retrieved if the data is available. To allow comparison between

GFT obtained assuming a parametric distribution and GFT obtained from the finite data, we per-

form a parametric bootstrap. This parametric bootstrap generates a range of finite sample estimates

under the hypothesis that the observed data is generated by a certain parametric distribution:

1. Assume B i.i.d. random variables with distribution G(·|θ), with empirical finite sample mo-

ments mr
y for r = 0, 1, as specified in equation 26 and corresponding GFTB;

2. Estimate the parameters θ of the distribution using MLE, calculate the parametric plug-in

population moments as specified in equation 25, µ̂r(y|θ̂) for r = 0, 1, and corresponding

ˆGFT (θ̂);

3. H0 : GFTB = ˆGFT (θ̂);

4. Draw N bootstrap samples of size B from G(·|θ̂);

5. For each sample of the parametric distribution, calculate the bootstrapped sample moments

(mr
y)
∗ and calculate the corresponding GFT ∗B.12

12Note that we do not re-fit the parametric distribution to the bootstrap sample. The vastness of the dataset at
our availability in the empirical section results both in a large computational burden but also a very precise estimation
of the distribution parameters. The influence of not refitting the parametric distribution to the bootstrap sample is
therefore negligent.

50



6. The p-value for the left-, and right-tailed test is then respectively specified as:

p̂l =
1

N + 1

[
N∑
n=1

I (GFT ∗B ≥ GFTB) + 1

]
; p̂r =

1

N + 1

[
N∑
n=1

I (GFT ∗B ≤ GFTB) + 1

]
.

(27)

The bootstrap exercise should therefore be interpreted as ‘the likelihood of observing GFT

as small or as large as GFTB under the null hypothesis that the observed data originates from

the parametric distribution G(·|θ)’, allowing us to evaluate whether the distributional assumption

provides a good fit to calculate GFT within the proposed model.

When calculating the bounded sample moments, complications can arise related to the lower

bound y. This lower bound is ex-ante unknown, can take values not observed in the data, and/or

resides in an unrepresentative part of the finite dataset.13 We address each issue below and argue

that these complications have little influence on our results.

1. y can take values within the boundaries of the data but are not observed. We use the

‘approxfun‘ interpolation function of the R base distribution to approximate the statistics for

such lower bounds.14 As the calculation of Gains From Trade (GFT) relies on domestic cutoffs

residing in the dense part of the productivity distribution, the influence of interpolation is

negligible.

2. y can take values below the lowest observed value in the data (y < xmin):

µry =
∑

I (y < x < xmin)xr︸ ︷︷ ︸
unobserved

+
1

B

B∑
b=1

I (x ≥ xmin)xr︸ ︷︷ ︸
observed

. (28)

The error arising from neglecting the unobserved part of the distribution is likely small as (i)

the smallest observation xmin in our dataset is rather small, (ii) the density in the unobserved

part is most likely very low, and (iii) the relative weight of the observations in the unobserved

part is small (see also Figure 1).

3. As the presented model is a stylized model, it is conceivable firms produce below the model’s

implied zero-profit productivity cutoff, for instance, when there is a positive expectation of

13We thank Gonzague Vannoorenberghe for pointing this out.
14All code available on request.
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future profits (Impullitti et al., 2013). This can explain very low observed productivity values

but will result in an unrepresentative left tail of the distribution (the lower the actual zero-

profit productivity cutoff, the more firms will have a positive expectation of future profits, and

the denser the left tail of the distribution will be). This issue affects both the nonparametric

and parametric estimates, as the parametric distribution is fitted to the observed distribution.

Also in this case, however, provided the low density in the left tail of the distribution and

the low relative weight of the observations in the left tail, the influence of this issue is likely

small.
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Appendix F Analytical expressions of µry

F.1 Pareto

µry =

∫ ∞
y

xr
kxkmin
xk+1

dx

= kxkmin
−yr−k

r − k
if k > r (29)

F.2 Inverse Pareto

µry =

∫ xmax

y
xr
kx−kmax
x−k+1

dx

= kx−kmax
xr+kmax − yr+k

r + k
(30)

F.3 Lognormal

µry =

∫ ∞
y

xr
1

xV ar
√

2π
e−(lnx−µ)2/2V ar2dx

=

∫ ∞
y

erlnx
1

xV ar
√

2π
e−(lnx−µ)2/2V ar2dx (31)

Note that

rlnx− (lnx− µ)2 /2V ar2 =
2V ar2rlnx− (lnx)2 − µ2 + 2µlnx

2V ar2

= −
(lnx)2 − 2(V ar2r + µ)lnx+

(
(V ar2r + µ)

)2 − (V ar2r + µ)2 + µ2

2V ar2

= −
[
lnx−

(
V ar2r + µ

)]2
2V ar2

+
(V ar2r + µ)2 − µ2

2V ar2

= −
[
lnx−

(
V ar2r + µ

)]2
2V ar2

+
r
(
rV ar2 + 2µ

)
2

so that

53



µry = e
r(rV ar2+2µ)

2

∫ ∞
y

1

xV ar
√

2π
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[lnx−(V ar2r+µ)]
2

2V ar2 dx

let z =
lnx−

(
rV ar2 + µ

)
V ar

, dz =
dx

xV ar

= e
r(rV ar2+2µ)

2

∫ ∞
lny−(rV ar2+µ)
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1√
2π
e−

1
2
z2dx

= e
r(rV ar2+2µ)

2
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(
rV ar2 + µ

)
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)]
(32)

F.4 Weibull15

µry =

∫ ∞
y

xr
k

s

(x
s

)k−1
e−(xs )

k

dx

let z =
(x
s

)k
, dz =

k

s

(x
s

)k−1
dx

s.t. x = sz
1
k

=

∫ ∞
( ys )

k
srz

r
k e−zdz

= sr
∫ ∞
( ys )

k
z(

r
k

+1)−1e−zdz

= srΓ

(
r

k
+ 1,

(y
s

)k)
(33)

where Γ(, ) denotes the upper incomplete gamma function.

15The bounded moments of the exponential distribution are obtained setting k=1.
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F.5 Fréchet

µry =

∫ ∞
y

xr
k

s

(x
s
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dx
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0
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[
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k
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if k > r (34)
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F.6 Burr

µry =
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r
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if c > r, kc > r (35)

where B(a, b) stands for the beta function, while B(x, a, b) stands for the lower incomplete beta

function with upper bound x.
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F.7 Generalized Gamma16

µry =
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c

skΓ(kc )
xk−1e−(xs )

c

dx

let z =
(x
s

)c
, dz =

c

s

(x
s

)c−1
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s.t. x = sz
1
c

=
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c
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z
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c

Γ(kc )

(
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1
c

s
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e−zdz, if c > 0

=
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Γ(kc )
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( ys )

c
z
r+k
c
−1e−zdz

=
sr

Γ(kc )
Γ

(
r + k

c
,
(y
s

)c)
(36)

F.8 Finite Mixture Model

The statistics for a Finite Mixture Model can easily be obtained from the calculated statistics for

the underlying individual distributions on which the mixture consists. For a mixture of the form:

g(x|Ψ) =

I∑
i=1

πimi(x|θi), πi ≥ 0,

I∑
i=1

πi = 1, (37)

we obtain, due to its additivity and applying the sum rule in integration:

µry =

∫ ∞
y

xrg(x|Ψ)dx =

∫ ∞
y

xr
I∑
i=1

πimi(x|θi)dx =

I∑
i=1

πi

∫ ∞
y

xrmi(x)dx =

I∑
i=1

πi(µi)
r
y. (38)

F.9 Piecewise composite

µry =

∫ ∞
y

xrg(x|θ)dx

=


α1

1+α1+α2

(µ1)ry−(µ1)rc1
M1(c1) + 1

1+α1+α2

(µ2)rc1−(µ2)rc2
M2(c2)−M2(c1) + α2

1+α1+α2

(µ3)ry
1−M3(c2) if 0 < y ≤ c2

1
1+α1+α2

(µ2)ry−(µ2)rc2
M2(c2)−M2(c1) + α2

1+α1+α2

(µ3)rc2
1−M3(c2) if c1 < y ≤ c2

α2
1+α1+α2

(µ3)ry
1−M3(c2) if c2 < y <∞

(39)

16The bounded moments of the Gamma distribution are obtained setting c=1.
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F.10 Right-Pareto Lognormal
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The last integral resembles the bounded moment condition of the Lognormal distribution solved

earlier with moment (r − k2) and mean (µ+ k2V ar
2) so that

µry = −k2e
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2
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(41)

Note that
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so that we get
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F.11 Left-Pareto Lognormal
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F.12 Double-Pareto Lognormal
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